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ABSTRACT

MULTI-FREQUENCY FLUXGATE MAGNETIC FORCE
MICROSCOPY

Ozan Aktaş

M.S. in Physics

Supervisor: Assist. Prof. Dr. Mehmet Bayındır

Co-supervisor: R. Assist. Prof. Dr. Aykutlu Dâna

September, 2008

In the recent years, progress in atomic force microscopy (AFM) led to the mul-

tifrequency imaging paradigm in which the cantilever-tip ensemble is simultane-

ously excited by several driving forces of different frequencies. By using multi-

frequency excitation, various interaction forces of different physical origin such

as electronic interactions or chemical interactions can be simultaneously mapped

along with topography. However, a multifrequency magnetic imaging technique

has not been demonstrated yet. The difficulty in imaging magnetic forces using

a multifrequency technique partly arises from difficulties in modulation of the

magnetic tip-sample interaction. In the traditional unmodulated scheme, mea-

surement of magnetic forces and elimination of coupling with other forces is ob-

tained in a double pass measurement technique where topography and magnetic

interactions are rapidly measured in successive scans with different tip-sample

separations. This measurement scheme may suffer from thermal drifts or topo-

graphical artifacts. In this work, we consider a multifrequency magnetic imaging

method which uses first resonant flexural mode for topography signal acquisi-

tion and second resonant flexural mode for measuring the magnetic interaction

simultaneously. As in a fluxgate magnetometer, modulation of magnetic moment

of nickel particles attached on the apex of AFM tip can be used to modulate

the magnetic forces which are dependent on external DC fields through the non-

linear magnetic response of the nickel particles. Coupling strength can be varied

by changing coil current or setpoint parameters of Magnetic Force Microscopy

(MFM) system. Special MFM tips were fabricated by using Focused Ion Beam

(FIB) and magnetically characterized for the purpose of multifrequency imaging.

In this work, the use of such a nano-flux-gate system for simultaneous topographic

and magnetic imaging is experimentally demonstrated. The excitation and de-

tection scheme can be also used for high sensitivity cantilever magnetometry.
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ÖZET

ÇOK FREKANSLI AKIGEÇİŞ MANYETİK KUVVET
MİKROSKOPİSİ

Ozan Aktaş

Fizik, Yüksek Lisans

Tez Yöneticisi: Doç. Dr. Mehmet Bayındır

Yrd. Tez Yöneticisi: Yrd. Doç. Dr. Aykutlu Dâna

Eylül, 2008

Son yıllarda atomik kuvvet mikroskopisinde (AKM) ortaya çıkan gelişmeler, asılı

uç sisteminin aynı anda farklı frekanslarda kuvvetler ile uyarıldığı çok frekanslı

görüntüleme akımını doğurmuştur. Çok frekanslı uyarılma ile elektronik veya

kimyasal etkileşimler gibi farklı fiziksel kökene sahip birçok etkileşim kuvvet-

leri yüzey topografisi ile aynı anda ölçülebilinir. Fakat, çok frekanslı manyetik

görüntüleme tekniği ise henüz gösterilmemiştir. Çok frekanslı görüntüleme tekniği

ile manyetik kuvvetlerin ölçülmesindeki zorluk kısmen manyetik uç ve örnek

arasındaki etkileşimin modulasyonundaki zorluktan kaynaklanmaktadır. Ge-

leneksel modulasyon kullanılmayan yöntemde, manyetik kuvvetlerin ölçülmesi

ve diğer kuvvetlerden ayrılması farklı örnek-uç mesafelerinde arka arka yapılan

iki geçişli tekniğin kullanılmasıyla olur. Fakat bu teknikte termal kayma ve to-

pografik yan etkiler gibi sorunlarla karşılasabilinir. Bu çalışmada, yüzey topolo-

jisi sinyalinin birinci salınımsal resonans moduyla, manyetik etkileşimin ise ikinci

salınımsal resonans moduyla aynı anda elde edildiği çok frekanslı bir manyetik

görüntüleme tekniği geliştirilmiştir. Akıgeçiş manyetometrisinde olduğu gibi

AKM asılı ucu üzerine takılan nikel parçacıkların manyetik momentlerinin mod-

ulasyonu kullanılarak, nikel parçacıkların doğrusal olmayan manyetik tepkileri

aracılığıyla harici DC alanlara baglı olan manyetik etkileşimlerin module edilmesi

mümkündür. Sargı akımının veya Manyetik Kuvvet Mikroskopi (MKM) sistemin

atanmış parametrelerinin değiştirilmesi ile etkileşmenin şiddeti değiştirilebilinir.

Özel olarak MKM uçları FIB kullanılarak üretilmiş ve çok frekanslı görüntüleme

amacı için manyetik olarak karakterize edilmiştir. Bu çalışmada böyle bir nano

akgeçiş sisteminin ayn anda topografi ve manyetik görüntülemede kullanılması

deneysel olarak gösterilmiştir. Kullanlan uyarma ve algılama yöntemi, yüksek

duyarlıklı asılı uç manyetometrisinde kullanılması olanağını doğurmuştur.

vi



vii
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trace on x̂− ẑ plane. . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.22 Mirror symmetric amplitude response of cantilever-magnetic par-

ticle system can occur with different initial conditions chosen for

same simulation parameters. . . . . . . . . . . . . . . . . . . . . . 68

5.23 Various amplitude (m) vs. B field (Gauss) responses are given for

some simulation parameters. . . . . . . . . . . . . . . . . . . . . . 68

5.24 Fluxgate measurement configuration in a local magnetic field

�Bsample of a sample is shown. . . . . . . . . . . . . . . . . . . . 69

5.25 Fluxgate measurement simulation result is shown. Presence of

external field results in asimetry in amplitude and phase responses. 70

5.26 FFT of the phase of 2nd resonance signal shows creation of even

harmonics at the presence of local magnetic field Bsample. . . . . 70

6.1 FIB system used in the processes. . . . . . . . . . . . . . . . . . . 72

6.2 Results of Energy Dispersive X-ray Analysis of the nickel film evap-

orated on silicon crystal. Contributions from silicon substrate and

nickel film are clearly seen. . . . . . . . . . . . . . . . . . . . . . . 73

6.3 Results of TEM imaging of the nickel thin film on silicon wafer:

Polycrystalline structure of the nickel coating can be seen. . . . . 73

6.4 Fabrication process of 1st tip: (a) Front view of commercial can-

tilever to be modifed. (b) Top view. (c) 1st cutting phase of nickel

film coating. (d) 2nd phase, i.e. release cutting. (e) Manipulation

and attachment of the target section on the cantilever tip. (f) A

different perspective of the attachment. . . . . . . . . . . . . . . . 75



LIST OF FIGURES xviii

6.5 Fabrication process of 1st tip (Continued. . . ): (a) Removal of the

manipulator probe from the target section and the cantilever tip.

(b) Top view. (c) A perspective view of the attachment. (d) Mod-

ification of the attached section resulting in a sharper cap for im-

provement of resolution. (e) A different view of the attachment on

the tip. (f) Backscattered Electron Detector (BSED) bottom view

of attached and modified section is showing more compositional

contrast which marks the light grey Ni film in the middle of white

Pt protective layer and dark grey Si substrate. . . . . . . . . . . . 76

6.6 Fabrication process of 2nd tip:(a) Front view of commercial can-

tilever to be modifed. (b) Head view. (c) Front view. (d) Side view.

(e) Cutting out trenches at both side of target section.(f) BSED

image showing compositional contrast of the nickel film sandwiched

between Pt layer of protection and Si substrate. . . . . . . . . . . 77

6.7 Fabrication process of 2nd tip (Continued. . . ): (a) Attachment of

manipulator probe via Pt deposition on the suspended target sec-

tion. (b) Alignment and attachment of magnetic target section

on cantilever tip. (c) Seperation of manipulator probe from target

section and cantilever tip. (d) Removal of manipulator probe. (e)

Side view of attached section showing nickel sandwiched between

Pt layer of protection and Si substrate. (f) BSED image showing

compositional contrast. . . . . . . . . . . . . . . . . . . . . . . . . 78

6.8 Fabrication of 2nd tip (Continued. . . )(a) Front view of trimmed

section with focused ion beams. (b) Side view. (c) Top view.

(d) Close view. (e) View of final modification of attached section

resulting only nickel column. (f) Side view of alignment between

the nickel column and the cantilever plane. . . . . . . . . . . . . . 79

6.9 Fabrication of the 3rd tip : (a) BSED image showing compositional

contrast. (b) Nickel film is seen between Pt layer of protection and

silicon nitrate/silicon (c) Side view. (d) Front view. . . . . . . . . 80



LIST OF FIGURES xix

6.10 MFP-3D AFM system shown in the figure was used for fluxgate

measurements and cantilever magnetometry [53]. . . . . . . . . . 81

6.11 Cantilever magnetometry configuration used for magnetic charac-

terization of FIB tailored MFM tips. . . . . . . . . . . . . . . . . 81

6.12 Deflection versus tip-samle separation plot is used for calculation

of the sensitivity parameter, i.e. AmpInvols(132.09 nm/V). . . . . 82

6.13 Thermal spectrum of 1st FIB tailored MFM tip. Inlet shows details

of fine tuning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.14 Amplitude, phase versus frequency scans of 1st tip were conducted

at different DC field values. . . . . . . . . . . . . . . . . . . . . . 84

6.15 Amplitude and phase signals of 1st tip at first resonant frequency

of the cantilever under quasi-sinusoidal temporal variation of field

(Sampling frequency is 4Hz). . . . . . . . . . . . . . . . . . . . . . 85

6.16 Applied field B, amplitude and phase versus time graphs for the

1st FIB tailored tip. . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.17 Amplitude and phase versus B magnetic field graphs for the 1st

FIB tailored tip. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.18 Thermal spectrum of 2nd FIB tailored MFM tip showing the first

4 mechanical modes. . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.19 Applied field B, amplitude and phase versus time graphs for the

2nd FIB tailored tip. . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.20 Amplitude and phase versus B magnetic field graphs for the first

resonance mode of 2nd FIB tailored tip. . . . . . . . . . . . . . . . 88

6.21 Deflection versus tip-samle separation plot is used for calculation

of the sensitivity parameter, i.e. AmpInvols(602 nm/V). . . . . . 88



LIST OF FIGURES xx

6.22 Thermal spectrum of 3rd FIB tailored MFM tip showing the first

4 mechanical modes. Inlet shows details of fine tuning at 2nd res-

onance frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.23 Amplitude and phase versus B magnetic field graphs for the first

resonance mode of 3rd FIB tailored tip. . . . . . . . . . . . . . . . 90

6.24 Amplitude and phase versus B magnetic field graphs for the second

resonance mode of 3rd FIB tailored tip. . . . . . . . . . . . . . . . 90

6.25 Amplitude and phase versus B magnetic field graphs for the normal

bare silicon tip. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.26 Amplitude and phase versus B magnetic field graphs for the can-

tilever coated with low coercivity material, permaloy. 180o reversal

of magnetization can be seen on the phase curve. . . . . . . . . . 92

6.27 Experimental setup used for multi-frequency MFM. . . . . . . . . 93

6.28 Topograpy of a harddisk surface was taken with 1st FIB tailored

tip. Convolution of the tip with the sample surface can be seen as

a rabbit ear like shapes on the dust particles. Red and blue curves

are the profiles of forward and backward scans of the same line,

respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.29 Image showing magnetic bit patterns on the harddisk surface was

taken with 1st FIB tailored tip with conventional two pass lift-

off methode. Red and blue curves are the profiles of forward and

backward scans of the same line, respectively. . . . . . . . . . . . 94

6.30 Topograpy of a harddisk surface was taken while magnetically

modulating FIB tailored tip at 2nd resonance frequency f2 (showing

coupling effect of the magnetic interaction). Red and blue curves

are the profiles of forward and backward scans of the same line,

respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95



LIST OF FIGURES xxi

6.31 Amplitude image of the signal at 2nd resonance frequency f2 (show-

ing topographical coupling as dark areas). Red and blue curves are

the profiles of forward and backward scans of the same line, respec-

tively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.32 Phase image of the signal at 2nd resonance frequency f2 (showing

topographical coupling). Red and blue curves are the profiles of

forward and backward scans of the same line, respectively. . . . . 96



List of Tables

2.1 First order anisotropy coffcients for Ni. The two last columns

represent the strain necessary to have magnetoelastic energy com-

parable to magnetocrystalline and magnetostatic energies [25]. . . 28

2.2 Crystallographic, electronic, magnetic and atomic properties of

nickel [25]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.1 Parameter values used in the cantilever magnetometry simulations

are listed. See text for definitions of L/α and L/αn parameters. . 52

5.2 Parameter values used in the cantilever magnetometry simulations

for the general model. . . . . . . . . . . . . . . . . . . . . . . . . 65

6.1 Properties of the cantilever and the section of nickel film attached

on the 1st tip are listed. . . . . . . . . . . . . . . . . . . . . . . . 83

6.2 Properties of cantilever and section of nickel coating attached on

the 2nd tip are listed. . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.3 Properties of cantilever and section of nickel coating attached on

the 3rd tip are listed. . . . . . . . . . . . . . . . . . . . . . . . . . 89

xxii



Chapter 1

Introduction

1.1 Motivation

Nanomagnetism is a current area of research today. In the past, using magne-

tometers such as Vibrating Sample Magnetometer [1] only average magnetization

of samples could be measured, but after the invention of techniques such as

Magnetic Force Microscopy (MFM) [2], Scanning Hall Microscopy [3], Scanning

SQUID Microscopy [4] micro and nano scale magnetism are no more out of reach

of the researchers. By using these new tools, investigation of ultra thin films or

single domain magnetic particles is expected to pave the way for potential appli-

cations of data storage mediums [5], spintronics [6], Magnetic Resonance Force

Imaging(MRFI) [7].

After its first demostration in 1987 [2], MFM was extensively used for the

observation of magnetic domain patterns, investigation of data storage mediums

such as thin films with perpendicular magnetic anisotropy or patterned magnetic

nanoparticle arrays, and also for vortex manipulation in superconductors at low

temperatures. Actually MFM is an offspring of a more general tecnique called

Scanning Probe Microscopy (SPM) which was originated from AFM invented by

Binig and et al in 1982 [8].

1
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Using cantilevers coated with magnetic materials such as permaloy or SmCo as

force/force gradient sensing element, stray fields of samples can be detected and

much information about magnetization of the sample can be obtained. But for an

exact interpretation and good quantitative analysis, there are two fundamental

problems hindering MFM

1. Lack of a priori information of magnetization of cantilever tips,

2. Coupling of magnetic force with other short and long range forces of a

typical tip-sample interaction.

For the calibration of tips with magnetic coatings, generally two simplified

models, i.e., single dipole moment and monopole moment approximations are

used. But recently it has been shown that calibration of tips with these models

depends on calibration samples because effective magnetic volume of interaction

depends on characteristic decay length of the calibration samples [9, 10, 11].

As for the decoupling of magnetic forces from other forces of the tip-sample

interaction, two-pass LiftTM mode MFM technique is generally used [12] and

this technique may suffer from thermal drifts or topographical artifacts.

In this thesis we consider single domain particles attached to the cantilever

tips as opposed to cantilevers fully coated with magnetic materials in order to cir-

cumvent the problem of dependance on characteristic decay length of calibration

samples. For this purpose, a nickel thin film was built by evaporation on silicon

wafer (also on S3N4) and then attached to the apex of a commercial cantilever tip

by using standard Transmision Electron Microscopy (TEM) sample preparation

techniques in a Focused Ion Beam (FIB) system. Also for the magnetic char-

acterization of tips, magnetic field scans as in cantilever magnetometry [13, 14]

were conducted and hysteresis curves obtained.

As for the decoupling of magnetic forces from other forces of tip-sample inter-

action such as van der Waals or repulsive atomic forces, we consider conventional

AFM multifrequency imaging methodes in which the cantilever-tip ensemble is

simultaneously excited by several driving forces[15]. We use first resonant flex-

ural mode for topography signal acquisition, second resonant flexural mode for
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measuring magnetic field interaction simultaneously. The sinusoidal voltage is

applied to piezo bimorph to drive cantilever at the first resonant flexural mode

and a magnetic field generated by a coil underneath the tip is used to exite second

resonant flextural mode. Modulation of magnetic particle attached to tip as in

fluxgate magnetometers [16, 17] can be used to decouple the interactions. Coher-

ent rotation of magnetic moment is considered as basic switching mechanism [18].

1.2 Organization of the Thesis

The thesis is organized as follows: Chapter 2 gives an introduction to magnetism

and hysterisis mechanism of the coherent rotation. In Chapter 3, a general the-

ory of tip-sample interaction and Magnetic Force Microscopy (MFM) are given.

Chapter 4 introduces the concept of mutifrequency imaging in Scaning Probe

Microscopy. In Chapter 5, fluxgate principle and cantilever magnetomerty are

considered. In Chapter 6, experimental results are given and comparisons to the-

oretical arguments are made. Finally, Chapter 7 concludes the thesis and gives

future perspective on the subject.



Chapter 2

Introduction to Magnetism

The goal of this chapter to give the reader information about magnetism and

relevant energy concepts. SI units are used throughout this thesis. Although it

is well known that magnetism is inherently a quantum mechanical phenomena,

discussion about energies given in classical way will be adequate for the scope of

this thesis. Especially ferromagnetism will be dealt in some depth since most of

magnetic phenemon such as hysteresis shows its richness and beauty in ferromag-

netism. For more information about magnetism, reader is suggested to consult

the following references [18, 19, 20].

2.1 Types of Magnetism

The best way to introduce different types of magnetism is to describe how ma-

terials respond to magnetic fields. All materials behave in a different way when

exposed to an external magnetic field. In order to understand the mechanism

of this difference, an atomic scale picture is more convenient. Magnetism at the

atomic scale can arise from two different origins, i.e. the orbital motion of the

electrons and the electron spin for incompletely filled orbitals. In an external

magnetic field, a magnetic moment opposing the field is induced in a solid as a

4
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result of Lenz law [21]. This diamagnetic effect is often superimposed by param-

agnetism, which results from unfilled electron orbitals. In some materials there is

a very strong interaction between atomic moments, and this coupling can result

in different types of magnetism.

The magnetic behavior of materials can be classified into the following five

major groups [22]:

1. Diamagnetism

2. Paramagnetism

3. Ferromagnetism

4. Antiferromagnetism

5. Ferrimagnetism

The induced magnetization �M in materials, defined as the dipole moment

per unit volume, is proportional to the external magnetic field �H (isotropic and

homogeneous) [21]:

�M = χ �H (2.1)

where χ is the magnetic susceptibility of the material. The relation between the

magnetic inductance �B and the magnetization �M is then

�B = μ0

(
�H + �M

)
= μ0

(
�H + χ �H

)
= μ0 (1 + χ) �H = μ0μr

�H (2.2)

Here μ0 is the vacuum permeability and μr = 1 + χ the magnetic permeability,

which is a material dependant parameter. Depending on the sign and magnitude

of χ different types of magnetism are distinguished.

• Diamagnetism: Albeit it is usually very weak, diamagnetism is a funda-

mental property of all matter. It is due to the non-cooperative opposing

behavior of orbiting electrons when exposed to an applied magnetic field.

Diamagnetic substances are composed of atoms which have no net magnetic

moments (i.e., all the orbital shells are filled leaving no unpaired electrons).
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However, when exposed to a magnetic field, a negative magnetization is

produced, so the susceptibility χ is negative.

• Paramagnetism: In this class of materials some of the atoms or ions in the

material have a net magnetic moment due to unpaired electrons in partially

filled orbitals. However, the individual magnetic moments do not interact

magnetically, and the magnetization is zero when the field is removed. In

the presence of a magnetic field, there is a partial alignment of the atomic

magnetic moments in the direction of the field resulting in a net positive

magnetization and positive susceptibility χ. In addition the efficiency of

the field in aligning the moments is opposed by the randomizing effects of

temperature. This results in a temperature dependent susceptibility known

as the Curie Law.

• Ferromagnetism: Strong quantum mechanical coupling between atomic mo-

ments can result in different orderings. In ferromagnetic materials, aligned

atomic moments give rise to a spontaneous magnetic moment called the

saturation magnetic moment (Ms). The internal interaction tending to line

up the magnetic moment is called the exchange field or Weiss molecular

field. The exchange field is not a real magnetic field, i.e. corresponding to

a current density, nevertheless one can deal with it as an equivalent mag-

netic field �Hw = λ �M . The value of this equivalent field can be as big as

�Bw ≈ 103 T which is much larger than external fields in normal condi-

tions [18]. The alignment effect of the exchange field is reduced by thermal

agitation. Above a certain temperature, the Curie temperature (TC), the

spontaneous magnetization vanishes and the spins are no longer ordered.

Thus, the sample changes from ferromagnetic phase to paramagnetic phase

at Tc . The temperature dependance of the susceptibility for ferromagnetic

material follows Curie-Weiss Law :

χ =
C

T − Tc
. (2.3)

In ferromagnets, �M is not proportional to �H , but depends in a complex way

on the history of the magnetization. The relation between the magnetiza-

tion along the direction of the external field �MH and �H shows hysteresis as
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can be seen in Fig. 2.1.

The various hysteresis parameters are not only intrinsic properties but also

depend on grain size, domain state, stresses, and temperature. Explanation

of hysteresis parameters is given below (Fig. 2.1).

Saturation Magnetization (Ms) Starting with the initial magnetiza-

tion curve at an unmagnetized state, at a certain external field �H,

the ferromagnet is saturated with the saturation magnetization Ms.

Now all magnetic moments are aligned in the direction of the exter-

nal magnetic field, so that the saturation magnetization is the largest

magnetization, which can be achieved in the material.

Remnant Magnetization (Mr) After the external field is removed, a

net magnetization will remain in the ferromagnet, called remanence,

Mr.

Coercive Field (Hc) The negative external field at which the magneti-

zation is reduced to zero is called coercive field �Hc. Depending on the

magnitude of �Hc hard and soft magnetic materials can be classified as

Hc ≥ 100 Oe = 7958 A/m, and Hc ≤ 5 Oe = 398 A/m respectively

[24].

• Antiferromagnetism: In an antiferromagnet spins are ordered as in ferro-

magnets but antiparallel with zero net magnetic moment. However, as in a

ferromagnet, temperature plays a key role. The antiferromagnetic order is

disappeared for temperatures above the Neel temperature (TN).

• Ferrimagnetism: More complex forms of magnetic ordering (in some ox-

ides such as NiO) called ferrimagnetism can occur as a result of the crystal

structure. The magnetic structure is composed of two magneticaly ordered

sublattices separated by the oxygen atoms. The exchange interactions are

mediated by the oxygen anions. So these interactions are called indirect

or superexchange interactions which result in an antiparallel alignment of

spins between the sublattices. In ferrimagnets, the magnetic moments of

the different sublattices are not equal and result in a net magnetic mo-

ment. Ferrimagnetism exhibits all the characteristics of ferromagnetism like
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spontaneous magnetization, Curie temperature, hysteresis, and remanence.

However ferro- and ferrimagnets have very different magnetic ordering.

2.2 Magnetic Energy Contributions

Two basic mechanisms are responsible for the behavior of magnetic materials,

exchange and anisotropy [18]. Exchange mechanism results from the combination

of the electrostatic interaction between electron orbitals and the Pauli exclusion

principle. It results in spin-spin interactions that is favorable for long-range spin

ordering over macroscopic distances. Anisotropy is mainly related to interactions

of electron orbitals with the potential of the hosting lattice. Lattice symmetry

reflected in the symmetry of the potential results in spin orientation along certain

symmetry axes of the hosting lattice so that it is energetically favored.

2.2.1 Exchange Energy

For the explanation of ferromagnetism phenomenological molecular field approach

is proposed. In fact for the microscopic interpretation of the molecular field, one

needs quantum mechanical results in terms of the so-called exchange interac-

tion. According to this theory two electrons that carry parallel spins (which

corresponds to a symmetric spin wave function) cannot stay close to each other

because of the property of antisymmetric two-electron wave function in real space.

The fact that they never come close reduces the average energy of electrostatic

interaction which favors the parallel spin configuration. In terms of Heisenberg

Hamiltonian exchange energy density eEx can be written as

eEx = −2J
∑
ij

�Si
�Sj (2.4)

where J is called exchange constant. The exchange coupling is a short range

interaction so only spins close to each other are effected. For J > 0 a paral-

lel arrangement is energetically favored as seen in ferromagnetism, but it is an

antiparallel configuration for J < 0.
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2.2.2 Magnetocrystalline Anisotropy

As seen from Eq. 2.4 exchange interactions are isotropic in space which means the

exchange energy of a given system is the same for any orientation of the magneti-

zation vector whose strength remains the same. In reality this rotational symetry

is always broken by anisotropy effects which make particular spatial directions

energetically favored. For a certain volume V with uniform magnetization �M de-

pendence of magnetic anisotropy enegy can be written in terms of �m = �M/
∣∣∣ �M ∣∣∣.

�m can be described by its Cartesian components mx, my, mz (same as direction

cosines) or spherical cordinates θ,φ (Fig. 2.2).

mx = sin(θ) cos(φ) (2.5)

my = sin(θ) sin(φ)

mz = cos(θ).

Magnetic anisotropy energy density eAN(�m), can be graphically represented as a

surface in space. The distance between the point of the surface and origin along

the direction �m is just eAN (�m). In this representation isotropic exchange energy

gives rise to a sphere (Fig. 2.3).

Since absolute value of the magnetic anisotropy energy density plays no role

eAN(�m) can be defined as a constant independent of �m. The presence of de-

pressions in the energy surface immediately show the space directions that are

energetically favored. These directions called easy magnetization axes represent

the directions along which the magnetization is naturally oriented to minimize

the system magnetic energy (Fig. 2.3).

The equilibrium points of �m directions satisfying the equilibrium condition

∂eAN (�m)

∂ �m
= 0 (2.6)

under the constraint |�m| = 1 can be local minima, saddle points, or local maxima

of the energy surface. A local minimum corresponds to an magnetic easy axis.

On the other hand the terms medium-hard axis and hard axis are sometimes

used to refer to a saddle point or to a local maximum, respectively. There are
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Figure 2.1: Hysteresis curve for ferromagnetic materials, showing
magnetization �M in the direction of the external field as a function of
�H [23].

Figure 2.2: Magnetization unit vector �m, with definition of direction cosines and
spherical angle coordinates.
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Figure 2.3: (a) The surface of exchange energy density eEX , and (b) broken
spherical symmetry with formation of easy magnetization axis (�z axis).
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generally two basic symetry breaking magnetic anisotropy, i.e. uniaxial and cubic

anisotropy.

2.2.2.1 Uniaxial Anisotropy

There is one special direction in space in uniaxial anisotropy and �z axis can

be selected as this direction. The anisotropy energy is invariant with respect to

rotations around this anisotropy axis, and depends only on the relative orientation

of �m with respect to the axis (cobalt is an example having uniaxial anisotropy).

To satisfy symetry considerations, the anisotropy energy is defined with an even

function of the magnetization component along �z as mz = cos θ. Generally m2
x +

m2
y = 1 − m2

z = 1 − cos θ2 = sin θ2 is used instead of cos2 θ as the expansion

variable. Thus the energy density eAN(�m) will have the general expansion

eAN(θ) = K0 +K1 sin2 θ +K2sin
4θ +K3sin

6θ + · · · (2.7)

where the anisotropy constants K1, K2, K3 have the dimensions of energy per unit

volume (J/m3). When K1 > 0, there are two energy minima at θ = 0 and θ = π

corresponding to the magnetization along the anisotropy axis with no preferen-

tial orientation. The anisotropy axis is an energetically favourable axis for �m

(Fig. 2.4). This type of anisotropy is known as easy-axis anisotropy. Conversely,

when K1 < 0, the energy is at a minimum for θ = π/2 which corresponds to �m

perpendicular to the axis pointing anywhere in the x-y plane which is described

by the term easy-plane anisotropy (Fig. 2.5).

For the case where K1 > 0 and �m lies along the easy axis, the anisotropy en-

ergy density of small deviations of the magnetization vector from the equilibrium

position can be approximated to second order in θ as

eAN(θ) ≈ K1θ
2 ≈ K12(1 − cos θ)

= 2K1 − μ0Ms
2K1

μ0Ms
cos θ = 2K1 − μ0Ms ·HAN . (2.8)

The angular dependence of the energy is the same as if there was a field of strength

HAN =
2K1

μ0Ms
(2.9)
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Figure 2.4: Uniaxial anisotropy with K1 > 0. Energy surface associated with
Eq. 2.7, when K0 = 0.1, K1 = 1, K2 = K3 = 0. The �z axis is an easy magnetiza-
tion axis.

Figure 2.5: Uniaxial anisotropy with K1 < 0. Energy surface associated with
Eq. 2.7, when K0 = 1.1, K1 = −1, K2 = K3 = 0. The x-y plane is an easy
magnetization plane.
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acting along the easy axis. The anisotropy field HAN gives a measure of the

strength of the anisotropy effect.

2.2.2.2 Cubic Anisotropy

This anisotropy typically originates from spin-lattice coupling in cubic crystals

such as nickel and iron. This anisotropy implies the existence of three special

directions (4 for Ni), which can be taken as the x-y-z axes. The lowest order

combinations of �m components constrained with the required symmetry are the

fourth-order combination m2
xm

2
y + m2

ym
2
z + m2

zm
2
x and the sixth-order one, i.e.

m2
xm

2
ym

2
z. The combination m4

x +m4
y +m4

z is dependent on the previous ones as

m4
x +m4

y +m4
z + 2(m2

xm
2
y +m2

ym
2
z +m2

zm
2
x) = m2

x +m2
y +m2

z = 1, (2.10)

so it is not used. The expression of the anisotropy energy takes the form

eAN = K0 +K1(m
2
xm

2
y +m2

ym
2
z +m2

zm
2
x) +K2(m

2
xm

2
ym

2
z) + · · · . (2.11)

The equivalent expression in terms of spherical coordinates is

eAN = K0 +K1

(
sin2 θ sin2 2φ

4
+ cos2 θ

)
sin2 θ

+K2

(
sin2 2φ

16

)
sin2 θ + · · · . (2.12)

When only the fourth-order term is important (i.e. K2 = 0), the behavior of

eAN(�m) is shown in Fig. 2.6 (K1 > 0) and Fig. 2.7 (K1 < 0). When K1 > 0, there

are six equivalent energy minima when the magnetization points along the x, y,

or z axes, in the positive or negative direction which identify easy magnetization

axes. The easy axes are < 100 > axes. < 110 > directions are saddle points of

the energy surface (medium-hard axes), whereas the < 111 > directions are local

maxima (hard axes) as can seen in Fig. 2.6.

When K1 < 0 (Fig. 2.7) there are now eight equivalent energy minima when

the magnetization points along the < 111 > directions. The < 110 > directions

are medium-hard axes, the < 100 > directions are hard axes.
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Figure 2.6: Cubic anisotropy with K1 > 0. Energy surface associated with
Eq. 2.11, when K0 = 0.1, K1 = 1, K2 = 0.

Figure 2.7: Cubic anisotropy with K1 < 0. Energy surface associated with
Eq. 2.11, when K0 = 0.4, K1 = −1, K2 = 0.
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2.2.3 Magnetostatics

When spatial distribution of magnetization M(�r) of materials is known in ad-

vance, solution of magnetostatic equations can be represented equivalently as [18]:

AM(�r) =
μ0

4π

∫
V

∇× M(�r′)
|�r − �r′| d3r′ − μ0

4π

∮
S

n× M(�r′)
|�r − �r′| da′ (2.13)

ΦM(�r) = −μ0

4π

∫
V

∇ ·M(�r′)
|�r − �r′| d3r′ +

μ0

4π

∮
S

n · M(�r′)
|�r − �r′| da

′ (2.14)

These fields are the consequence of the existence of a certain magnetization M(�r)

in the system, so the subscript in AM(�r) and ΦM(�r) is used. In both equations,

the first integral is a volume integral over the body volume V , and the second is

a surface integral over the boundary surface S. �n is the unit vector normal to

the surface element da′ pointing out of the body. The quantities

�kM = −�n× �M

σM = �n · �M (2.15)

describe effect of singularities at the body surface. They play the same role of

surface magnetization current �kM and of surface magnetic charge density σM (see

Fig. 2.8).

Figure 2.8: Uniformly magnetized cylinder with representation of surface poles
and surface currents (Eq. 2.15) [18].
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Among the situations where the magnetic state of the system is known in

advance, the simplest situation is the one where the magnetization is uniform

everywhere inside the body, so that it can be described by a single vector �M .

Since ∇· �M = 0 everywhere inside the body, only the surface integral of Eq. 2.14

contributes to the scalar potential:

Φ(�r)M =
1

4π
�M ·

∮
S

�n

|�r − �r′|da
′. (2.16)

Equation 2.16 shows that, apart from the overall proportionality on �M, the scalar

potential is determined uniquely by the geometrical shape of the body. In the

case of uniform �M the field �HM = −∇ · Φ is itself uniform everywhere inside

the body if the body is of ellipsoidal shape. If �M lies along one of the principal

axes of the ellipsoid, then the field �H is antiparallel to it, and has an intensity

proportional to �M (see Fig. 2.9).

�HM = −N �M (2.17)

Under these circumstances, the magnetic field �HM inside the body is usually

termed the demagnetizing field, as the name implies it opposes the magnetization,

and the coefficient N is called the demagnetizing factor. The value of N depends

on which ellipsoid axis �M lies along. In general case there are three demagnetizing

factors, Na, Nb, Nc, associated with each of the three ellipsoid principal axes, a,

b, c. These demagnetizing factors obey the general constraint

Na +Nb +Nc = 1. (2.18)

The magnetostatic energy of a magnetized body is

UMS = −μ0

2

∫
V
HM ·Md3r (2.19)

In the case of an ellipsoidal body uniformly magnetized along an arbitrary magne-

tization orientation, Eq. 2.19 can be written in terms of demagnetizing constants

as

eMS = UMS/V =
1

2
μ0(NaM

2
x +NbM

2
y +NcM

2
z )

=
1

2
μ0M

2
s (Nam

2
x +Nbm

2
y +Ncm

2
z) (2.20)



CHAPTER 2. INTRODUCTION TO MAGNETISM 18

Figure 2.9: Magnetization, magnetostatic field, and induction for uniformly mag-
netized ellipsoid [18].

where Na, Nb, and Nc are the demagnetizing factors related to the three principal

axes. The origin of shape anisotropy is this magnetostatic energy. It can be as

important as magnetocrystalline anisotropy for the magnetization process under

some circumstances. In the case of a spheroid, where two principal axes are equal,

the body has rotational symmetry around the third, so Equation 2.20 becomes

eMS =
1

2
μ0M

2
s

(
N⊥(m2

x +m2
y) +N‖m2

z

)
=

1

2
μ0M

2
s

(
N⊥sin2θ +N‖cos2θ

)
=

1

2
μ0M

2
sN‖ +

1

2
μ0M

2
s (N⊥ −N‖)sin2θ (2.21)

Equation 2.21 has the same symmetry characteristic of uniaxial anisotropy. The

term shape anisotropy is used because originates from the geometrical shape of

the body.

2.2.4 Magnetoelastic Energy

In addition to magnetocrystalline anisotropy there is also another effect related to

spin-orbit coupling called magnetostriction. It arises from the strain dependence

of the anisotropy constants. A previously demagnetized crystal can experience

a strain upon magnetization therefore change its dimension. For example in Ni

λ100 = −46 · 10−6 and λ111 = −25 · 10−6 which means magnetization of nickel

contracts the crystal in the magnetization direction. The contraction is bigger in
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the < 100 > direction. The inverse affect, the change of magnetization with stress

also occurs. A uniaxial stress can produce a unique easy axis of magnetization if

it is strong enough to overcome all other anisotropies.

The magnitude of the stress anisotropy is described by two or more empirical

constants called the magnetostriction constants (λ111 and λ100) and the level of

stress. The magnetoelastic anisotropy energy density [18] can be written as

eME =
3

2
λσ sin2 θ (2.22)

where θ is the angle between the magnetization and the stress σ direction, and

λ is the appropriate magnetostriction constant. The stress creates an uniaxial

anisotropy along the direction of stress applied. The associated anisotropy con-

stant is

KME =
3

2
λσ. (2.23)

Respectively depending on whether λσ > 0 or λσ < 0.

For cubic materials [25], magnetoelastic anisotropy energy density eME is

given by another expression

eME = B1(m
2
xεxx +m2

yεyy +m2
zεzz)+B2(mxmyεxy +mymzεyz +mzmxεzx) (2.24)

where mi are components of the magnetization �M, εij is the strain tensor and Bi

are the magnetoelastic coeffcients. The latter expresses the coupling between the

strain tensor and the direction of the magnetization.

2.2.5 Zeeman Energy

The Zeeman energy is the potential energy of a magnetic moment in a field, or

the potential energy per unit volume for a large number of moments [25] :

eZ = −μ0
�M · �H = −μ0MH cos θ (2.25)

where θ is the angle between the magnetization and the applied magnetic field.

Orientation of magnetic moment in the direction of applied field results in lowest

energy configuration (see Fig. 2.10).
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Figure 2.10: The lowest energy orientation in the direction of applied field �B = b�x
is shown as a depression on the energy surface.

2.3 Coherent Rotation

According to theory of coherent rotation1 a single magnetization �m = �M/ |M |
vector is sufficient to describe the state of a whole system [18]. When the mag-

netization rotates under the action of the external field, the change is spatially

uniform. The most natural example is that of a magnetic particle small enough

to be a single domain. The particle may exhibit magnetocrystalline anisotropy

and shape anisotropy. We consider the particular case of a elipsoidal particle

made up of a material with uniaxial magnetocrystalline anisotropy, and the crys-

tal anisotropy axis coincides with the symmetry axis of the elipsoid. According to

Eq. 2.7 and Eq. 2.21 the magnetocrystalline and shape anisotropy energies have

the same dependence on �M orientation and can be summed up to give a total

anisotropy energy density of the form

eAN(�m) = Keff sin2 φ (2.26)

1Stoner-Wohlfarth Model
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where φ is the angle between �m and the anisotropy axis, and the effective

anisotropy constant Keff is equal to

Keff = K1 +KMS = K1 +
μ0M

2
s

2
(N⊥ −N‖). (2.27)

K1 is the uniaxial magneto-crystalline anisotropy constant, and KMS is the shape

anisotropy constant. if it is assumed that Keff > 0, then the anisotropy axis is

the easy direction of magnetization. Under zero field conditions, �m is aligned

to the easy axis. In an applied external field �H , �M rotates magnetization away

from the easy axis by an angle depending on the relative strength of anisotropy

and field. Because of symmetry arguments �m will lie in the plane containing the

anisotropy axis and the external field. For the description of two-dimensional

problem in this plane we call φ and θ the angles made by �m and �H with the easy

axis (see Fig. 2.11). The magnetic energy of the particle is then sum of magnetic

anisotropy energy (Eq: 2.7) and Zeeman energy (Eq. 2.25)

e(θ, �H) = V Keff sin2 φ− μ0MsV Hcos(θ − φ), (2.28)

where V is the particle volume. The system is described by three parameters,

Figure 2.11: Relations between uniaxial anisotropy axis, magnetization unit vec-
tor, �M and external field, �H .

i.e. the angles φ, θ , and H . Eq. 2.28 can be written in dimensionless form, by

introducing

ē(φ,�h) =
e(φ, �H)

2KeffV
and h =

μ0MS

2Keff
H =

H

HAN
(2.29)
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where HAN is the anisotropy field (see Eq. 2.9). We obtain

ē(φ,�h) =
1

2
sin2φ− hcos(θ − φ). (2.30)

Instead of (φ,�h) it will be more convenient to use the field components perpen-

dicular and parallel to the easy axis defined as

h⊥ = hsinθ

h‖ = hcosθ. (2.31)

In terms of these variables, Eq. 2.30 becomes

ē(φ,�h) =
1

2
sin2φ− h⊥ sinφ− h‖ cosφ. (2.32)

For θ = 0 energy surface ē(φ, h) is shown in Fig. 2.12.

Figure 2.12: Energy surface showing minimum, maximum and saddle point (cal-
culated with Eq: 2.30, θ = 0).

Under zero field, there exist two energy minima, corresponding to �m pointing

up or down along the easy axis. For small fields around zero, one stable and one

metastable states are available to the system. Conversely, when �h is very large,

there is one stable state available, in which �m is closely aligned to the field. There-

fore, there must exist two different regions, two-energy minima low-field region
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and one-energy-minimum outer region. The boundary curve represents the bifur-

cation set for magnetization problem where discontinuous changes (Barkhausen

jumps) in the state of the system may take place [18]. By calculating ∂ē(φ,�h)/∂φ

from Eq. 2.32 and by imposing the condition ∂ē(φ,�h)/∂φ = 0 one obtains the

equation
h⊥
sinφ

− h‖
cosφ

= 1 (2.33)

By calculating ∂2ē(φ,�h)/∂2φ and using the stability criteria ∂2ē(φ,�h)/∂2φ = 0 in

addition to Eq. 2.33, one further obtains

h⊥
sin3φ

+
h‖

cos3φ
= 0. (2.34)

Eliminating in turn h⊥ and h‖, from Eq. 2.33 and Eq. 2.34, the following para-

metric representation of the boundary curve is obtained:

h⊥ = sin3φ

h‖ = −cos3φ, (2.35)

where φ represents the orientation of �M in the state of instability at the point

considered. This curve is the astroid shown in Fig. 2.13. Various energy profiles

also can be seen on the h space, (h̃ = h⊥,h‖).

Each equilibrium state obeys Eq. 2.33. By writing Eq. 2.33 as in the form

h⊥ = h‖ tanφ+ sinφ (2.36)

the following conclusion can be arrived: The set of all points of the h̃ plane where

ē(φ,�h) has a minimum or maximum in correspondence of a given orientation

φ0, �m is represented by the straight line tangent to the astroid at the point

of coordinates calculated by Eq. 2.35. And considering second-order derivative

∂2ē(φ,�h)/∂2φ stable orientations can be found.

In the magnetization process under alternating (AC) field, the field point

moves back and forth in h̃ space along a fixed straight line. The �m orientation

at each point is obtained by the tangent construction discussed. If the field

oscillation were all contained inside the astroid h < 1, the magnetization would

reversibly oscillate around the orientation initially occupied on past history. If
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field amplitude is large enough to cross the astroid boundary, then the state

occupied by the system loses stability when the field representative point exits

the astroid. At that moment a Barkhausen jump takes place and some energy is

dissipated. For various θ orientations of magnetic field �h, hysterisis curves can

be obtained as in Fig. 2.14.

2.4 Domain Walls

In real materials at temperatures below the Curie temperature, an external field

is needed to drive the sample to saturation, due to the presence of domains.

Although the electronic magnetic moments are aligned on atomic scale different

regions of magnetization direction can coexist. These are called domains and the

magnetization is saturated in each domain. If the area covered by both domains is

equal, the overall magnetization is zero (Fig. 2.15). The anisotropy energy defines

the direction of magnetization inside the domains, which will be parallel to the

easy axes. On the other hand the exchange energy, it causes neighboring spins to

be parallel to each other. Regarding these two energy contributions a one-domain

configuration with the magnetization pointing in the direction of the easy axis

seems energetically favored (see Fig. 2.15). However, when the demagnetization

energy is taken into account, it can be seen that it counteracts a large stray field

resulting from the domain configuration of the ferromagnetic particle.

Various types of domain wall structure exist (see Fig. 2.16). Domain structures

always arise from the possibility of lowering total energy of the system, by going

from a saturated domain configuration with high magnetic energy to a domain

configuration with a lower energy.

2.5 Properties of Nickel

Nickel is hard grey-silver metal. It is a transition metal. Like cobalt and iron it

belongs to period IV and is ferromagnetic. The main nickel parameters are given
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Figure 2.13: Control plane of coordinates h‖ and h⊥. The border of shaded
region is the astroid curve defined by Eq. 2.35. Examples of the dependence of
the system energy ē(φ,�h) (Eq. 2.32) on φ at different points in control space h̃
are shown [18].

Figure 2.14: Hysteresis curves of a single domain particle having uniaxial
unisotropy are shown for different values of θ, angle between �m and �B (Gauss).
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Figure 2.15: Domain patterns in small ferromagnetic particles. From left to right,
the demagnetization energy is reduced by the formation of domains especially by
closure domains [25].

Figure 2.16: Various types of domain walls can be realised [18].
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in the Tab. 2.2. A schematic of the cubic lattice is shown in Fig. 2.17.a. Note that

[111] is the easy magnetization direction (Cubic anisotropy) [25]. Magnetization

in other directions can also be seen in Fig. 2.17.b.

The nickel magnetocrystalline anisotropy has a temperature dependant char-

acter [26]. The strong temperature dependance of the three anisotropy factors

K1, K2 and K3 can be seen in Fig. 2.18. It also can be seen that K2 and K3 are

large enough to have considerable effect. They also can change sign.

We choose nickel as a magnetic fluxgate element because of its intrinsic mag-

netic properties such as the small saturation magnetization (resulting in a rel-

atively small magnetostatic energy density) and the rather small magnetocrys-

talline anisotropies at room temperature.

Relative importance of the energies for Ni is given in Tab. 2.1. A strain of

only 0.1% in nickel gives rise to a magnetoelastic anisotropy comparable to K1.

To have a magnetoelastic anisotropy comparable to the magnetostatic anisotropy

strains of 2.4% are needed in Ni films.

Figure 2.17: (a) Schemetic of a fcc cubic lattice of nickel. The arrow represents
magnetic easy axis 〈111〉 direction of nickel [25]. (b) Magnetization curves for
single crystal of nickel [19].
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Figure 2.18: Temperature dependance of the anisotropy constants of Ni [26].

Energy Term Ni
Magnetostatic 1

2
μ0M

2
s +0.14 · 106 J/m3

Magnetocrystalline K1 −4.45 · 104 J/m3

Magnetoelastic B1 +6.2 · 106 J/m3

Magnetocrystalline≈Magnetoelastic K1

B1
Strain of 0.1%

Magnetocrystalline≈Magnetoelastic μ0
M2

s

2B1
Strain of 2.4%

Table 2.1: First order anisotropy coffcients for Ni. The two last columns represent
the strain necessary to have magnetoelastic energy comparable to magnetocrys-
talline and magnetostatic energies [25].
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Symbol Ni
Atomic Number 28
Electron configuration [Ar] 3d84s2

Crystal structure (Fig. 2.17) fcc
Easy magnetization axis (Fig. 2.17) 〈111〉
Magnetic coupling ferromagnetic
Oxide (NiO) magnetic coupling antiferromagnetic
Magnetic moment per atom 0.6 μb

Exchange energy [20] A = ≈ 1 · 10−11 J/m
Curie Temperature 627 K
Density 8908 kg/m3

Saturation magnetization @ 4K [27] Ms = 0.49 · 106 A/m
Saturation magnetization @ 293K [27] Ms = 0.52 · 106 A/m
Melting temperature 1726 K
Lattice constant 0.352 nm
Magnetocrystalline anisotropy K1 = −4.5 · 103 J/m3

coefficients @ 300K [26] K2 = −2.3 · 103

Magnetocrystalline anisotropy K1 = −12 · 104 J/m3

coefficients @ 4.2K [26] K2 = 3 · 104

Magnetoelastic coupling cofficients B1 = 6.2 · 106 Pa
@RT [20] B2 = 4.3 · 106

Table 2.2: Crystallographic, electronic, magnetic and atomic properties of
nickel [25].



Chapter 3

Magnetic Force Microscopy

This chapter is aimed to give an introduction to MFM principles used in this

thesis. Our commercial AFM/MFM system1 is retrofitted with a coil in order to

apply vertical magnetic fields (AC+DC) up to ±50 Gauss (calibrated with a Hall

probe) to the samples under investigation. Also a variable magnetic field module

VFM of the system is used for creating horizontal fields up to ±2500 Gauss (0.25

T).

3.1 Introduction to MFM

Magnetic force microscopy is a special mode of operation of the scanning force

microscope [12]. The technique employs a magnetic probe, which is brought close

to a sample and interacts with the magnetic stray fields near the surface. The

magnetic probe is standard silicon cantilever (or silicon nitride cantilever) coated

by magnetic thin film (Fig. 3.1.b). The strength of the local magnetostatic inter-

action affects the vertical motion of the tip as it scans across the sample. This

vertical motion can be detected by various techniques, the beam deflection meth-

ode used in our commercial AFM system can be seen schematically in Fig. 3.1.a.

Other system components of a magnetic-force microscope is shown in Fig. 3.2

1MFP-3D AFM, Asylum Research, Inc.

30
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Figure 3.1: (a) Commercial AFM system with beam deflection detection. (b) A
typical AFM cantilever with pyramidal tip.

Figure 3.2: System components of a magnetic-force microscope.
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Magnetic measurements are conducted by means of two-pass method to sep-

arate the magnetic image from the topography (See Fig. 3.3). As in standart

non-contact [28] or semi-contact [29] AFM imaging, topography of sample is con-

structed at first. While cantilever is vibrating at its first resonant mode, it is

raster scanned over surface, and by means of some feedback mechanism (phase,

amplitude or frequency) topograpy of surface is constructed by the software. After

topography measurement in the second pass the cantilever is lifted to a selected

height for each scan line and the stored topography is followed (without the feed-

back). As a result, the tip-sample separation during second pass is kept constant.

This tip-sample separation must be large enough to eliminate the van der Waals

force. During second pass the cantilever is affected by long-range magnetic forces.

Both the height-image and the magnetic image are obtained with this method.

In the second pass two methods are available:

1. DC MFM: This MFM mode detects the deflection of a nonvibrating can-

tilever due to the magnetic interaction between the tip and the sample

(similar to contact mode). The magnetic force acting on the cantilever can

be obtained by Hook’s law

Fdef = kδz (3.1)

where δz is the deflection of the cantilever and k is the cantilever force

constant. In order to use this methode, the magnetic fields must be strong

enough to deflect cantilver or ultrasoft cantilevers must be used.

Figure 3.3: (a) 1 st pass: Topography acquisition. (b) 2nd pass : Magnetic field
gradient acquisition.
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2. AC MFM: During the second pass, phase shifts of resonance oscillations

is used to detect the magnetic force derivative (see Fig. 3.3 [30, 12]. It is

possible to record the following signals in the AC MFM for the magnetic

image mapping:

• The amplitude of cantilever oscillations.

• The phase shift between vibrations of the piezoelectric actuator and

the cantilever.

The AC MFM methods are more sensitive. A phase image of harddisk taken with

AC MFM mode of our system is seen Fig. 3.4.

Figure 3.4: A typical MFM imaging of harddisk (Showing bits written by mag-
netic heads).

3.2 Cantilever Dynamics

Cantilever is an flexible beam, one end is clamped, the other is free. Motion of its

free end can be satisfactorily modeled by damped simple harmonic oscillator with
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sinusodial driving force. If tip-sample interaction force Fts(z) is also considered,

vertical motion of the free end z(t) can be expressed as

z̈ + 2δż + w2
0z = A0 cos Ωt+ Fts(z)/meff (3.2)

where A0 = F/meff , w0 is free resonance frequency, meff = k/w2
0 is effective

mass, δ = w0/2Q is damping coefficient of the cantilever (Q is quality factor), Ω

is driving frequency. For small oscillations one can write Fts(z) as aTaylor series

expansion at point z0 corresponding to the equilibrium position:

Fts(z) = Fts(z0) +
dFts(z0)

dz
z̃(t) + o(z̃(t)2) (3.3)

where z̃(t) is expressed through z(t) and z0 as follows:

z̃(t) = z(t) − z0, (3.4)

and z0 is determined from the following condition

w2
0z0 =

Fts(z0)

meff
. (3.5)

Changing z(t) in Eq. 3.2 and taking into account Eq. 3.4, Eq. 3.5, we get

z̃′′ + 2δz̃′ + w̃2z̃ = A0cosΩt (3.6)

where w̃ =
√
k̃/meff is the new frequency variable, k̃ = k − F ′

ts is the effective

spring constant, and F ′
ts = dFts/dz is the force gradient. A general solution of

Eq. 3.6 is

z̃(t) = z̃s(t) + Z0 cos(Ωt+ φ) (3.7)

where zs(t) is the solution in the absence of external force (oscillator natu-

ral damped oscillations). Due to the friction, natural oscillations are damped:

zs(t) → 0 at t → +∞. Therefore, over the time t � 1/δ only forced oscillations

will present in the system which are described by the second summand term in

Eq. 3.7.

In Eq: 3.7, oscillations amplitude Z̃0 and phase shift φ̃ in the presence of

external force gradient are given by

Z̃0 =
A0√

(w̃2 − Ω2) +
w2

0Ω2

Q2

(3.8)
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tan φ̃ =
w0Ω

Q(Ω2 − w̃2)
. (3.9)

Maximum oscillation amplitude Z̃0 occurs at resonant frequency Ω̃R is

Z̃max =
2A0Q

2

w̃2
√

4Q2 − 1
≈ A0Q

w̃2
@ Ω̃R =

√
w̃2 − 2δ2. (3.10)

Thus, the force gradient results in an additional shift of a vibrating system.

Fig. 3.5 shows amplitude-frequency and phase-frequency curves at different values

of force gradient F ′
ts.
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Figure 3.5: (a) Amplitude vs. Frequency curves and (b) Phase vs. Frequency at
different values of force gradient F ′

ts.

Resonant frequency Ω̃R in the presence of external force Fts can be written as

Ω̃R = w0

√
1 − F ′

ts

k
− 1

2Q2
=

√
Ω2

R − w2
0F

′
ts

k
. (3.11)

Hence, the additional shift of the amplitude-frequency curve is (Fig. 3.6)

ΔΩR = Ω̃R − ΩR = ΩR

⎛⎝
√√√√1 − w2

0

kF ′
ts

− 1

⎞⎠ . (3.12)

If

∣∣∣∣ w2
0

kω2
R
F ′

ts

∣∣∣∣ < 1, we can further simplify Eq: 3.12

ΔΩR ≈ −w0

2k
F ′

ts (3.13)
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If oscillations occur under the driving force at frequency w0, the phase shift is

φ = π/2. If the force gradient is present, the phase shift in accordance with

Eq. 3.9 becomes:

φ̃(w0) = arctan

(
k

QF ′
ts

)
. (3.14)

If
∣∣∣ k
QF ′

ts
< 1

∣∣∣, we can make a Taylors expansion of expression Eq. 3.14 as follows

φ̃(w0) =
π

2
− Q

k
F ′

ts. (3.15)

Hence, the additional phase shift due to the force gradient is (Fig. 3.6)

Δφ = φ̃(w0) − π
2

= −Q
k
F ′

ts (3.16)

Figure 3.6: Variation of the phase of oscillations with resonant frequency.

The maximum change of ΔA in case of the resonant frequency variation

(Eq: 3.13), takes place at the maximum slope of amplitude vs. frequency curve.

The maximum change in oscillations amplitude in Fig. 3.7 is then

ΔA =
(

3A0Q

3
√

3k

)
F ′

ts @ ΩA = w0

√
1 − F ′

ts

k

(
1 ± 1√

8Q

)
(3.17)
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Figure 3.7: Variation of the amplitude oscillations with resonant frequency.

3.3 Tip-sample Interaction (DMT Model)

The interaction between tip and sample is determined by two regions of surface

potentials, i.e. repulsive region and attractive region. The instantaneous distance

between tip and sample is D = zs + z where z is the tip deflection and zs is the

distance between the undeflected cantilever and the sample. Van der Waals forces

dominate the interaction in the attractive regime (D ≥ a0). In the repulsive

regime (D < a0) the tip-sample forces are calculated from the Derjaguin-Muller -

Toporov (DMT) model [31]. For the DMT model energy dissipation due to tip-

sample contact is negligible. The parameter a0 corresponding to the interatomic

distance is introduced to avoid an unphysical divergence. The tip sample forces

are given by

Fts(z) =

⎧⎨⎩− HR
6(zs+z)2

D ≥ a0

−HR
6a2

0
+ 4

3
E∗√R(a0 − zs − z)3/2 D < a0

(3.18)

where H is the Hamaker constant and R the radius of the tip. The effective

contact stiffness is calculated from E∗ = [(1 − ν2
t )/Et + (1 − ν2

s )/Es]
−1

, where Et

and Es are the respective elastic moduli and νt and νs the Poisson ratios of the

tip and the sample, respectively (see the force curve in Fig: 3.8). For very small

oscillations around an equilibrium position z0, Eq: 3.18 can be linearized as

kts =
∂

∂z
Fts(z)

∣∣∣∣∣
z=z0

=

⎧⎨⎩− HR
3(zs+z0)3

D ≥ a0

2E∗√R(a0 − zs − z)1/2 D < a0

(3.19)
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Figure 3.8: DMT force curve with parameters Et = 180 ∗ 109 Pa, Es = 109 Pa,
H = 10−20 J, a0 = 1.36 nm, R = 10 nm, ν = 0.3.

3.4 Calibration of MFM Tips

In atomic force microscopy, force derivative dF/dz can originate from a wide

range of sources, including electrostatic tip-sample interactions, van der Waals

forces, damping, or capillary forces. However, MFM relies on those forces that

arise from a long-range magnetostatic coupling between tip and sample. This

coupling depends on the internal magnetic structure of the tip, which greatly

complicates the explanation of contrast formation.

In general, a magnetized body, brought into the stray field of a sample, will

have the magnetic potential energy E [21]

E = −μ0

∫
�Mtip · �Hsample dVtip (3.20)

where μ0 is the permeability of free space. The force acting on an MFM tip can

thus be calculated by:

F = −∇ · E = μ0

∫
∇ ·

(
�Mtip · �Hsample

)
dVtip (3.21)
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The integration has to be carried out over the tip volume, or rather its magnetized

part. Simplified models for the tip geometry and its magnetic structure are often

used in order to simplify these calculations.

A limitation in the use of MFM is that the magnetic configuration of the

sensing probe is rarely known in detail. So a model of MFM tips is required. The

simplest model a MFM tip is the point-tip approximation [9, 10]. The effective

monopole and dipole moments of the tip are located at a certain distance away

from the sample surface (Fig. 3.9). The unknown magnetic moments as well as

the effective probe-sample separation are treated as free parameters to be fitted

to experimental data. The force acting on the tip in the local magnetic field of

the sample is given by

�F = μ0(−qtip + �mtip · ∇)�Hsample (3.22)

Combining both contributions, the resulting force in one dimensional case (for

Figure 3.9: The most widespread models of MFM tips: (a) MFM tip is approx-
imated by a single dipole �m or single pole q model (b) Extended charge model.
One implementation is shown, pyramidal active imaging volume with different
magnetized facets.

direction �z) can be expressed as

Fz = μ0

(
−qHz +mx

∂Hx

∂z
+my

∂Hy

∂z
+mz

∂Hz

∂z

)
(3.23)

and force derivative dF/dz as

dF

dz
= μ0

(
−q∂Hz

∂z
+mx

∂2Hx

∂z2
+my

∂2Hy

∂z2
+mz

∂2Hz

∂z2

)
(3.24)
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When the frequency that drives the MFM tip is kept constant, using Eq: 3.16

and Eq: 3.24 the phase shift due to the force between the sample stray field and

the MFM tip can be expressed as

ΔΦ = −μ0
Q

k

(
−q∂Hz

∂z
+mx

∂2Hx

∂z2
+my

∂2Hy

∂z2
+mz

∂2Hz

∂z2

)
(3.25)

where Q is the quality factor of the MFM tip cantilever resonance, k is the

spring constant of cantilever, q is the effective magnetic mopole of the tip, mi is

the effective dipole moment of the tip, and Hz is the vertical component of the

sample stray field. Assuming magnetic moment of tip has mz component only,

we can consider only the terms with Hz.

Using these models MFM tips are calibrated with current carrying metal

stripes or coils which produce well controllable and regular magnetic fields [9,

10, 11]. Generally magnetic fields have an analytic form which can be used to

fit experimantal data. These metal stripes or coils are manufactured by e-beam

lithography which enables submicron features.

3.5 External Magnetic Field Sources

In cantilever magnetometry (see Chapter 5), variable field module (VFM) of the

MFM system was used for generating in-plane fields of ±2500 Gauss. VFM relies

on a rare-earth permanent magnet to apply a field to the sample. By rotating

the magnet, different amounts of magnetic flux through the gap can be adjusted

(Fig. 3.10). The magnet rotation is controlled by a motor and various rate of

rotation, i.e. rpms, can be selected.

For applications of vertical AC/DC magnetic fields of ±50 Gauss, voice coil of

head actuator (removed from a hard disk drive) is used. It was placed on sample

plate of MFM system. Calibration of this coil was done by using a Hall sensor

with reference to applied excitation voltage . Calibration data with linear curve

fit

Bver = 10.29V + 3.429 (Gauss) (3.26)



CHAPTER 3. MAGNETIC FORCE MICROSCOPY 41

Figure 3.10: The strength and sign of the magnetic field applied to the sample
depends on the rotation angle of the magnet [32].

is shown on Fig. 3.11. V is excitation voltage applied by a function generator

(Standford Reseach Systems, DS345). Hall sensor was found to have an offset of

3.429 Gauss.
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Figure 3.11: Calibration of the coil creating vertical magnetic field was done using
a Hall sensor with reference to applied exitation voltage.



Chapter 4

Multifrequency Imaging Methods

in SPM

The current interpretation of AFM is based on point-mass models [33], i.e., the

cantilever-tip system is considered as a damped harmonic oscillator having single

resonance frequency. This approximation has been successful to describe the

complex nonlinear dynamics of cantilever. However, point-mass models ignore

higher oscillation modes of the cantilever. When spectral characteristics of the

AFM signal is analysed, a broad band signal of higher harmonics can be observed.

If the nonlinearity of the tip-sample interaction, and the multiple flextural modes

of the cantilever are taken into account, then a deeper understanding of the AFM

signal can be reached.

4.1 Multimodal Model of AFM Cantilever

The equation of motion for the flexural vibrations of a freely vibrating and

undamped cantilever beam can be approximated by the EulerBernoulli equa-

tion [33, 34]

EI
∂4z(y, t)

∂y4
+ ρA

∂2z(y, t)

∂t2
= 0 (4.1)

42
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where z(y, t) is the vertical displacement, y is the position along the cantilever, t

is the time , E is the modulus of elasticity, I is the area moment of inertia, ρ is

the volume density, and A is the uniform cross sectional area of the cantilever. By

assuming solution of form z(y, t) = φ(y) cos(wnt), it is found that the resonant

frequency of the nth eigenmode wn is related to the respective eigenvalues κn by

EIκ4
n − ρAw2

n = 0. (4.2)

The modal shapes φ(y) are determined by imposing boundary conditions

(clamped-free) for solutions. The cantilever is clamped at y = 0. The bound-

ary conditions are φ(0) = 0 for the displacement and derivative of displacement

φ′(0) = 0 for the deflection slope. At y = L the cantilever is free, there are no

external torques or shear forces; φ′′(L) = 0 and φ′′′(L) = 0, respectively. The

Figure 4.1: Cantilever as an extended object (rectangular beam) [30].

eigenvalues can be obtained from the characteristic equation which is found after

appling boundary conditions on modal shapes

cosκnL coshκnL = −1. (4.3)

Solutions for the first five wavenumbers are κnL = 1.875, 4.694, 7.855, 10.996,

14.137 (n=1,2,3,4,5). The eigenvectors of the free cantilever are given by:

φn(y) =
R

2

[
cos(κny) − cosh(κny) − cos(κnL) + cosh(κnL)

sin(κnL) + sinh(κnL)
(sin(κny) − sinh(κny))

]
(4.4)
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Figure 4.2: Illustration of the first five flexural eigenmodes of a freely vibrating
cantilever beam.

where R is amplitude. The rectangular beam and its first five flexural eigenmodes

are illustrated in Fig. 4.1 and Fig. 4.2, respectively.

Euler-Bernoulli partial differential equation of the cantilever can be also ap-

proached by a system of n second order differential equations, one for each eigen-

mode of the cantilever [15]. We also assume that dynamics of the system is mostly

contained in the first two eigenmodes. Then we obtain a system of two differential

equations (See Fig. 4.3),

m1z̈1 = −k1z1 − m1w1

Q1

ż1 + F1 cosw1t+ F2 cosw2t+ Fts(z1 + z2) (4.5)

m2z̈2 = −k2z2 − m2w2

Q2
ż2 + F1 cosw1t+ F2 cosw2t+ Fts(z1 + z2) (4.6)

where mi = ki/w
2
i is the effective mass of mode i; Qi, ki, A0i, Fi, and wi =

2πfi are, respectively, the quality factor, force constant, free amplitude, external

excitation force (Fi = kiA0iQi), and angular frequency of the i eigenmode. The

solution of the above system can be approached by,

z(t) = z1(t) + z2(t) ≈ A1 cos(w1 − φ1) + A2 cos(w2 − φ2) (4.7)

where Ai is the amplitude and φi is the phase shift of the ith eigenmode.
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Figure 4.3: (a) Mechanical model for first two modes of cantilever as a coupled
two harmonic oscillators [35].

4.2 Multifrequency Exitation and Imaging

In multi-frequency imaging methode, the cantilever is both driven and measured

at two (or more) frequencies [33, 36]. To drive cantilever a sum of voltages at

frequencies f1 and f2 is generally applied on shake piezo. But there are also

other means of driving the mechanical oscillations, i.e. using the electrical force

between biased tip and sample [37] or the magnetic force created by a coil on a

small magnet attached to tip [38]. AC deflection contains information at both

of those frequencies, as shown in Fig. 4.4. The output of the lockin amplifiers,

polar amplitudes and phases (A1, φ1, A2, φ2,. . . ) of two or more frequencies can

be used for imaging or can be combined with other signals and used in feedback

loops.

The controller can use one or both of the resonant frequencies to operate a

feedback loop. If the amplitude of the fundamental frequency A1 is used as the

feedback error signal, then fundamental phase φ1, the second resonant frequency

amplitude A2 and phase φ2 can be used as an independant source channels. So

while measuring the topography, some other kind of physical feature of sample,

such as contact potential difference in Kelvin Probe Microscopy [39] or charging

hysteresis of silicon nanocrystals as in Electrostatic Force Microscopy [37], can

be simultaneously acquired. Amplitude and phase of higher frequency modes

can show an increased contrast on the sample [29] or a strong dependence on a
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Figure 4.4: In multi-frequency imaging, the cantilever is both driven and mea-
sured at two (or more) frequencies of resonant flextural modes. [36]

physical parameter such as Hamaker constant of the sample [40].



Chapter 5

Fluxgate and Cantilever

Magnetometry

Fluxgate principle is used to measure local field strength Bsample of the samples

in this thesis, so a brief introduction to this principle is given in the first sec-

tion of this chapter. Cantilever magnetometry is used extensively to characterize

the MFM tips fabricated by FIB operations. Coercive field, total magnetic mo-

ment are physical parameters which can be measured by experimental fitting to

the results of Cantilever Magnetometry. Simulations results with two working

conditions, which we call characterization and measurement configurations, will

be given and comparisons with actual experimental data will be made later in

Chapter 5.1.

5.1 Fluxgate Magnetometry

Fluxgate principle is the working principle of Fluxgate Magnetometers [41, 42,

43, 44] which are sensors designed to measure magnetic fields. The most basic

fluxgate detector is the single core sensor which consists of a nonlinear core (a soft

magnetic material) surrounded by excitation and sensing coils. The geometry of

configuration is shown in Fig. 5.1.

47
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Figure 5.1: The fluxgate magnetometer configuration and operation. [41]

Figure 5.2: A typical fluxgate signal (a) at the absence of external field (b) at
the presence of external field [45].

The excitation coils are driven by an alternating current that produces a

magnetic field which varies the permability of core. The core saturated equally

in both directions by the positive and negative cycles of excitation current in the

absence of external field. The induced voltage at pick-up coils which is a result

of Faraday’s Law is thus symmetric (see Fig. 5.2.a).

When an external magnetic field Hex is present, hysterisis curve of magnetic

core will shift in the direction of external field Hex. So the field produced by

the excitation current will have an offset which will unbalance the time intervals

during which the core is saturated. Induced voltage will be asymmetric in this

case and can be used to measure external field Hex (see Fig. 5.2.b).
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5.2 Cantilever Magnetometry

Magnetic properties of nanoscale samples can be characterized using the tech-

nique of Cantilever Magnetometry. In this technique, sample is placed, attached

or deposited on cantilever [46], and an external magnetic field is applied on

sample-cantilever system. There are differents ways of conducting magnetom-

etry measurements. In a DC magnetic field, torque on sample causes a deflection

which can be used for magnetic measurements [47]. In an alternating gradient

magnetometer (AGM) [48], an AC magnetic field gradient is applied and resultant

amplitude of oscillations is used. Magnetometry measurements can also be made

by measuring the resonant frequency of vibrating cantilevers in a DC magnetic

field. Shifts in resonant frequency of cantilever oscillations give information about

magnetic properties [49]. But in this technique, ultra-soft and high Q cantilevers

must be used. So measurements are conducted in cyrogenic temperatures and

under high vacuum conditions.

In this thesis, a different technique is used for cantilever magnetometry and

measurements with standart cantilevers can be conducted in normal vacuum con-

ditions and at room temperatures. Driving cantilever directly applying torque

with uniform AC magnetic field in an adjustable horizontal DC magnetic field,

changes in the magnetic states of sample can be translated into amplitude and

phase variations. Characterization of FIB tailored tips (Chapter 6.1) can be made

in characterization configuration and fluxgate magnetic field measurements can

be made in measurement configuration.

5.2.1 Characterization Configuration

In characterization configuration, a vertical AC magnetic field (max. 10 Gauss)

is used to oscillate the cantilever-magnetic particle system which has initial tilt

angle θeq. Also a DC magnetic field (±2500 Gauss) is applied to deflect cantilever

some angle θ from initial tilt (see Fig. 5.3). Magnetic particle is assumed to

be a single domain Stoner-Wohlfarth particle [18] and have effective uniaxial
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magnetic anisotropy. This anisotropy axis (magnetic easy axis) is also assumed

to be oriented along the long symetry axis of the particle. As seen in Chapter 2.2,

effective uniaxial magnetic unisotropy energy includes contributions from shape

anisotropy energy (eMS), magnetoelastic unisotropy energy (eME) and uniaxial

magnetocrystalline unisotropy energy (eMC). So effective magnetic anisotropy

energy density eAN can be written in terms of [18, 25]

eAN = eMC + eMS + eME = Keff sin2 φ

Keff = KMC +KMS +KME

EAN = KeffV sin2 φ (5.1)

where φ is the angle between magnetic easy axis �x and total magnetic moment

�m of particle, and EAN is total effective magnetic anisotropy energy of particle

whose volume is V.

Figure 5.3: The cantilever magnetometry configuration used for characterization
of magnetic tips. Magnetic moment �m of single domain particle tilts some φ angle
from easy axis �x in a horizontal DC magnetic field �BDC .

After some external DC magnetic field �BDC is applied, coherent rotation takes

place and total magnetic moment �m of particle tilts φ angle from easy axis �x

according to Stoner-Wohlfarth Model (Fig: 5.3). For the coordinate system

shown in Fig. 5.3, total magnetic moment �m of particle and applied DC magnetic



CHAPTER 5. FLUXGATE AND CANTILEVER MAGNETOMETRY 51

field �BDC can be written as

�BDC = BDC

{
sin(θeq + θ)�i+ cos(θeq + θ)�j

}
(5.2)

�m = MsV
{
cos(φ)�i+ sin(φ)�j

}
(5.3)

where Ms is saturation magnetization and V is volume of the particle. The

Zeeman Energy of particle can be written using Eq. 5.2 and Eq. 5.3 as

EZeeman = −�m · �BDC

= −MsV BDC [cosφ sin(θeq + θ) + sinφ cos(θeq + θ)]

= −MsV BDC sin(θeq + θ + φ). (5.4)

The energy stored at cantilever deflected some angle θ from equilibrium tilt

angle θeq is

Ecanti =
1

2
kz2 =

1

2
k(Leffθ)

2 (5.5)

where static effective length Lseff = L/αS of cantilever is defined by αS = 1.5,

i.e. static deflection parameter which is calculated by using beam theory [50] (see

Fig. 5.4).

Figure 5.4: The slope of static deflection at the end of cantilever is used for
calculation of effective length Lseff

The rotation of magnetic moment of particle and new equilibrium deflection of

cantilever can be found by mimimizing the total energy U(θ, φ) of system which is

sum of effective magnetic anisotropy energy (Eq. 5.1), Zeeman energy (Eq. 5.4),

and stored energy of deflected cantilever (Eq. 5.5)

U(θ, φ) = −MsV BDC sin(θeq + θ + φ) +KeffV sin2 φ+
1

2
k(Lseffθ)

2 (5.6)
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Ms 0.52 · 106 Am2

V 1.18 · 10−18 m3

Keff 8.39 · 104 J/m3

k 10 N/m
Q 200 -
L 150 · 10−6 m
Leff L/α m
Ldeff L/αn m
θeq 11o deg
BDC ±0.225 T
BAC ±0.5 mT

Table 5.1: Parameter values used in the cantilever magnetometry simulations are
listed. See text for definitions of L/α and L/αn parameters.

with respect to θ and φ. The equilibrium angles θ′ and φ′ must satisfy the

conditions

∂U(θ, φ)

∂θ

∣∣∣∣∣
θ=θ′,φ=φ′

= 0 and
∂U(θ, φ)

∂φ

∣∣∣∣∣
θ=θ′,φ=φ′

= 0. (5.7)

Putting Eq. 5.6 in equilibrium conditions Eq. 5.7 and solving two resultant

equation, we can find the relation between equilibrium values of θ and φ as

θ =
KeffV

kL2
seff

sin 2φ. (5.8)

Total energy of the system now can be written in terms of one variable φ after

replacing θ with Eq. 5.8.

U(φ) = −MsV BDC sin(θeq + n sin 2φ+ φ) +KeffV sin2 φ

+
1

2
k(Lseffn sin 2φ)2 (5.9)

where the proportionality coefficient n = KeffV/kL
2
seff is written instead. Total

energy profiles at increasing or decreasing BDC field values are shown in Fig. 5.5,

and Fig. 5.6. Evolution of mimimum the points is in the direction of arrows.

Parameters used for the simulations are listed in Tab. 5.1.

Taking initial conditions as φ = 0 and BDC = 0, successive calculations of

new equilibrium angles φ′ can be made numerically. The experimental B field
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Figure 5.5: Total energy profile and moving equilibrium points at decreasing field
values (0 → −0.225 Tesla).

Figure 5.6: Total energy profile and moving equilibrium points at increasing field
values (0 → 0.225 Tesla).
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curve shown in Fig. 5.7(a) was used for simulations. Time evolution of angle φ

shown in Fig. 5.7(b) has sharp falls which are unstable points. Consequently a

hysteresitic behaviour as shown in Fig. 5.8 happens. Also path of stable points

on total energy surface can be seen in Fig. 5.9.

Figure 5.7: (a)The experimentally applied quasi-sinusoidal magnetic field BDC

shown in figure is used in simulations. (b) Unstable points are sudden change of
angle φ (except 0-2π)

Change of magnetic state of the particle can be translated to amplitude and

phase variations of cantilever oscillations if a vertical AC magnetic field �BAC of

frequency Ω

�BAC = BAC cos(Ωt)
{
− cos(θeq + θ)�i+ sin(θeq + θ)�j

}
(5.10)

is applied on cantilever-particle system (see Fig. 5.3). It is assumed that small

values of �BAC (0-10 Gauss) have negligible effect on the magnetic state of parti-

cle. To increase sensitivity, a resonant mode frequency is generally chosen. The

alternating magnetic field applies an alternating torque on particle which drives

cantilever. Kinematically equivalent force �Feq = �τ/Ldeff of this torque �τ can be

calculated if dynamic effective length Ldeff of cantilever is known as shown for

only 2nd flextural mode in Fig. 5.10.
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Figure 5.8: Easy axis component cosφ of total magnetic moment �m shows similar
easy axis type hysteresis.

Figure 5.9: Total energy surface of cantilever-magnetic particle system. Path
of stable equilibrium points is the black curve on the energy surface. Unstable
points where Barkhausen jumps take place also are shown in figure.
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The vertical displacement z(y) and angular deflection dz(y)/dz of vibrating

beam is given by [14]

z(y) =
A

2
[cos(κny) − cosh(κny) − B (sin(κny) − sinh(κny))] (5.11)

dz(y)

dy
=
Aκn

2
[− sin(κny) − sinh(κny) − B (cos(κny) − cosh(κny))] (5.12)

B =
cos(κnL) + cosh(κnL)

sin(κnL) + sinh(κnL)
(5.13)

where length L of cantilever and κn wave number of nth vibration mode satisfy

clamped-free boundary conditions cos(κnL) cosh(κnL) = −1 [34]. So dynamic

effective length of cantilever can be defined by Ldeff = L/αdn using αdn parameter

which satisfies the equation

dz(y)

dy

∣∣∣∣∣
y=L

=
αdnz(L)

L
=

z(L)

Ldeff

. (5.14)

αdn values for first four flextural modes of cantilever are 1.377, 4.788, 7.849,

11.996 [51].

Figure 5.10: Dynamic effective length Ldeff of second flextural mode of cantilever.

The torque on cantilever in field �BAC (Eq. 5.10) is

�τ = �m× �BAC

= MsV BACcos(wt) [cosφ sin(θeq + θ) + sinφ cos(θeq + θ)]�k

= MsV BACsin(θeq + θ + φ)cos(Ωt)�k. (5.15)
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So kinematically equivalent driving force Feq is

Feq =
|�τ |
Ldeff

=
MsV BACsin(θAC + θ + φ)

Ldeff

cos(Ωt). (5.16)

Effective spring constant k of cantilever vibrating in magnetic field �BDC is

also changed. The change of k can be calculated using second derivative of total

energy of the system (Eq. 5.6) and θ = z/Lseff as

keff =
∂2U

∂2z
=

1

L2
seff

∂2U

∂2θ

∣∣∣∣∣
θ=θ′,φ=φ′

=
MsV BDC

L2
eff

sin(θeq + θ′ + φ′) + k (5.17)

where θ′ and φ′ are the equilibrium angles calculated numerically. After determi-

nation of the effective spring constant keff (Eq. 5.17) and the torque equivalent

force Feq (Eq. 5.16) on the cantilever, equation of motion is turned out to be

z̈ = −w0

Q
ż −

(
MsV BDC

L2
seffm

sin(θeq + θ′ + φ′) +
k

m

)
z

+
MsV BACsin(θeq + θ′ + φ′)

Ldeffm
cos(Ωt). (5.18)

From the solution of equation of motion Eq. 3.8, amplitude R is

R =
MsV BAC |sin(θeq + θ′ + φ′)|w2

0/kLdeff√(
MsV BDC sin(θeq+θ′+φ′)w2

0

L2
eff

k
+ w2

0 − Ω2

)2

+
w2

0Ω2

Q2

(5.19)

and phase ψ (See Eq. 3.9) is

tan(ψ − ε π) =
w0Ω

Q
(
Ω2 − w2

0 −MsV BDC sin(θeq + θ′ + φ′)w2
0/kL

2
eff

) (5.20)

where ε = 1 if θeq + θ′ + φ′ < 0, otherwise ε = 0. If we drive the cantilever at

the zero-field (BDC = 0) resonance frequence of Ω = w0

√
1 − 1/2Q2, amplitude

R and phase ψ can be rewritten independent of natural frequency w0 as

R =
MsV BAC |sin(θeq + θ′ + φ′)| /kLdeff√(

MsV BDC sin(θeq+θ′+φ′)
kL2

eff
+ 1

2Q2

)2

+ 1
Q2

(
1 − 1

2Q2

) (5.21)

tan(ψ − ε π) = −
√

1 − 1
2Q2

1
2Q

+ QMsV BDC

kL2
eff

sin(θeq + θ′ + φ′)
. (5.22)
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Simulations were made for different values of effective magnetic anisotropy

constant Keff = 5 · 104, 7 · 104, 9 · 104, 1 · 105, 2 · 104, 4 · 104 J/m3. The

effect of different values of Keff can be seen in Fig. 5.11. As Keff decreases,

coercive field Hc decrease. For some range of values of Keff , hysteresis comes

to play. Amplitude and phase of signals with or without hysteresis can be seen

in Fig. 5.12, Fig. 5.14. Amplitude and phase of signals versus applied field BDC

with or without hysteresis can be seen in Fig. 5.13 and Fig. 5.15.

Figure 5.11: Easy axis type hysteresis curves with different values of magnetic
anisotropy constant Keff .

In derivation of equations Eq. 5.9 and Eq. 5.18, too much simplifications and

assumptions about shape, orientation and type of magnetic anisotropy of the

particle were made. In a realistic experiment, shape and crystalline anisotropy

axises can be at an arbitrary orientation with respect to coordinate system of the

cantilever tip whose x̂ − ẑ plane is where oscillation takes place and magnetic

fields are applied. Therefore a general configuration shown in Fig. 5.16 is used

for modeling and 3D simulations [52].

Total magnetic moment �m of the particle can be described in terms of direction
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Figure 5.12: Calculated amplitude and phase of oscillation versus time curves
with different values of magnetic anisotropy constant Keff (with hysteresis).
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with different values of magnetic anisotropy constant Keff (with hysteresis).
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Figure 5.14: Calculated amplitude and phase of oscillation versus time curves
with different values of magnetic anisotropy constant Keff (without hysteresis).
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Figure 5.16: General configuration is shown for an arbitrary shape anisotropy axis
�as and crystalline anisotropy axis �ac orientations. x̂ − ẑ plane is the oscillation
plane of the cantilever tip in which magnetic fields are applied.

cosines mx, my, mz in coordinate system 〈xyz〉 of the cantilever tip as

�m = MsV (mx, my, mz) (5.23)

where

mx = sin θm cosφm

my = sin θm sinφm

mz = cos θm. (5.24)

For the specifications of arbitrary shape and crystalline anisotropy coordinate

axises, it is necessary to define two angle parameters θ and φ. New coordinate

axises can be obtained by rotation of cantilever tip coordinate system 〈xyz〉 about

�y axis by θ and then about �z axis by φ (Other way around can also be chosen but

it defines a different coordinate system). Magneto-crystalline anisotropy axises

shown in Fig. 5.16 can be written as

�acx = (cos θC cos φC, cos θC sinφC ,− sin θC)

= (acx1, acx2, acx3)
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�acy = (− sinφC , cosφC , 0)

= (acy1, acy2, acy3)

�acz = (sin θC cosφC , sin θC sinφC , cos θC)

= (acz1, acz2, acz3) (5.25)

and shape anisotropy axises can be written in a similar way as

�asx = (cos θS cosφS, cos θS sin φS,− sin θS)

= (asx1, asx2, asx3)

�asy = (− sinφS, cosφS, 0)

= (asy1, asy2, asy3)

�asz = (sin θS cosφS, sin θS sinφS, cos θS)

= (asz1, asz2, asz3). (5.26)

By using Eq. 5.23 and Eq. 5.25, direction cosines of the magnetic moment �m in

the coordinate system of crystalline anisotropy can be computed as

α1 = acx1mx + acx2my + acx3

α2 = acy1mx + acy2my + acy3

α3 = acz1mx + acz2my + acz3 (5.27)

and direction cosines of the magnetic moment �m in the coordinate system of

shape anisotropy are

β1 = asx1mx + asx2my + asx3

β2 = asy1mx + asy2my + asy3

β3 = asz1mx + asz2my + asz3. (5.28)

DC magnetic field �BDC applied on the plane of oscillation x̂ − ẑ is written in

terms of initial tilt θeq and deflection angle θ as

�BDC = BDC(cos(θeq + θ), 0,− sin(θeq + θ)). (5.29)

All the above notations are defined for the purpose of simplifying the total

energy expression which is sum of the Zeeman Energy (Eq. 2.25), the shape
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anisotropy energy (Eq. 2.20), the cubic magneto-crystalline energy (Eq. 2.11)

and the potential energy of deflected cantilever (Eq. 5.5). Total energy of the

cantilever-nickel particle system in the magnetic field �BDC without constant terms

is

U = −BDCMsV (mx cos(θeq + θ) −mz sin(θeq + θ))

+
uoMs2V

2

(
Naβ

2
1 +Nbβ

2
2 +Ncβ

2
3

)
+K1V

(
α2

1α
2
2 + α2

3α
2
2 + α2

3α
2
1

)
+K2V

(
α2

1α
2
2α

2
3

)
+
k(Leffθ)

2

2
. (5.30)

As can be seen from Eq. 5.30 total energy of the system is characterized by tree

parameters which are the deflection angle θ of the cantilever, the elevation angle

θm and the azimuth φm angle of magnetization �m. The problem can be reduced

to two dimensions using equilibrium condition on the deflection angle θ

∂U

∂θ
= BDCMsV (mx sin(θeq + θ) +mz cos(θeq + θ)) + kL2

seffθ = 0. (5.31)

Assuming small angle approximation which is the case for the deflection and after

making some manipulations, the deflection angle θ can be written as

θ = − mx sin θeq +mz cos θeq

mx cos θeq −mz sin θeq + kL2
seff/(BDCMsV )

. (5.32)

Substituting Eq. 5.32 in total energy equation Eq. 5.30 and then minimizing

according to θ and φ, equilibrium orientation of the magnetization �m can be

found for various external field conditions. See Appendix A for MATLAB codes.

To convert equilibrium magnetic states into experimentally observed quanti-

ties, vertical AC magnetic field �BAC of form

�BAC = BAC cos(Ωt)(sin(θeq + θ), 0, cos(θeq + θ)) (5.33)

is applied. Again it is assumed that AC magnetic field of 5-10 Gauss has negligible

perturbation on system. The component of AC torque driving the cantilever in

x̂− ẑ plane is

�τy =
(
�m× �BAC

)
y

= MsV BAC cos(Ωt) (mz sin(θeq + θ) −mx cos(θeq + θ)) (5.34)
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and kinematically equivalent force (See Eq. 5.16) is

Feq =
τy

Ldeff

= MsV BAC (mz sin(θeq + θ) −mx cos(θeq + θ)) cos(Ωt)/Ldeff . (5.35)

Effective spring constant of the system in this general model is

keff =
1

L2
seff

∂2U

∂2θ
=
MsV BDC

L2
seff

[mx cos(θeq + θ) −mz sin(θeq + θ)] + k. (5.36)

After finding driving force Feq and effective spring constant keff of system,

amplitude R and tangent of phase of oscillation tanΦ can be computed as

R =
MsV BAC |mz sin(θeq + θ) −mx cos(θeq + θ)|w2

0/(kLdeff )√(
w2

0

k
BDCMsV [mx cos(θeq+θ)−mz sin(θeq+θ)]

L2
seff

+ w2
0 − Ω2

)2

+
w2

0Ω2

Q2

(5.37)

tan(Φ − ε π) =
w0Ω

Q
(
w2 − Ω2

0 − w2
0

k
BDCMsV [mx cos(θeq+θ)−mz sin(θeq+θ)]

L2
seff

) (5.38)

where ε = 1 if [mz sin(θeq + θ) −mx cos(θeq + θ)] < 0, otherwise ε = 0. Direction

cosines mx, my, mz of the magnetic moment �m are obtained minimizing the total

energy of the ssytem Eq. 5.30 for a given magnetic field �BDC .

Simulations for general model were made for the experimentally applied DC

magnetic field �BDC shown in Fig. 5.7. Simulation parameters used are listed in

table Tab. 5.2. Surface of total energy at DC magnetic field �BDc of 400 Gauss can

be seen in Fig. 5.17. Trace which total magnetic moment �m of particle follows

under varying DC magnetic field �BDc is shown in Fig. 5.18. Also amplitude R

response of cantilever-magnetic particle system is shown in Fig. 5.19. Another

result of the simulations showing dependance on initial states is seen in Fig. 5.20

and Fig. 5.21. The parameters different from the ones listed in Tab. 5.2 for this

simulation are θC = 0o, φC = 0o, K1 = −5 ∗ 103, V = 9 ∗ 10−20 and Keff = 105.
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Ms 0.52 · 106 Am2

V 6 · 10−20 m3

Keff 7.7 · 104 J/m3

K1 −5 · 104 J/m3

K2 0 J/m3

θS 0 deg
φS 0 deg
θC 40 deg
φC 170 deg
k 0.2 N/m
Q 92.6 -
L 475 · 10−6 m
Leff 3.1 · 10−4 m
Ldeff 9.9 · 10−5 m
θeq 11o deg
BDC ±0.225 T
BAC ±0.5 mT

Table 5.2: Parameter values used in the cantilever magnetometry simulations for
the general model.

Figure 5.17: Calculated total energy surface at 400 Gauss is shown (calculated
with parameters listed in Tab. 5.2).
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Figure 5.18: (Blue curve)Calculated trace of the total magnetic moment �m of

particle in 3D under varying DC magnetic field �BDC . (Red curve)Projection of
trace on x̂− ẑ plane is also shown.

Figure 5.19: Calculated amplitude response of cantilever-magnetic particle sys-
tem under varying magnetic fields in general model. Results show similarity in
some respect to the results of the simplified model.
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5.2.2 Fluxgate Measurement Configuration

The fluxgate measurement configuration is same as the characterization configu-

ration except there is only vertical AC magnetic field �BAC applied as shown in

Fig. 5.24. �BAC is sum of sinusoidal magnetic field of 0.15 T at 1kHz and driving

AC magnetic field of 0.5 mT at 2nd resonance frequency of the cantilever. It is

assumed that local field of sample is in the direction of �BAC . Local magnetic field

values of +0.01 T and −0.01 T were superimposed on the magnetic field �BAC .

Simulations were made with the simplified model (Keff = 5.104J/m3). Results

can be seen in Fig. 5.25.

Figure 5.24: Fluxgate measurement configuration in a local magnetic field
�Bsample of a sample is shown.

As can bee seen from the results shown in Fig. 5.25 magnetic particle flips its

magnetic moment �m two times in one period of the sinusoidal magnetic field at

1kHz corresponding to two sudden change of phase of 180o in the phase signal.

Presence of the local magnetic field Bsample shifts the timing of these phase alter-

nations, thus an asymetry in phase signal occurs (change of duty cyle in this case)

as in fluxgate magnetometry. Local field of the sample Bsample can be deduced

from the even harmonics of the phase signal (see Fig. 5.26).
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Chapter 6

Results

This chapter explains the fabrication process of MFM tips having submicron

nickel particles attached using standard Focused Ion Beam (FIB) techniques,

measurement of their magnetic responses in a DC magnetic field �BDC and mul-

tifrequency fluxgate magnetic imaging results with these FIB tailored magnetic

tips.

6.1 Fabrication of MFM Tips by FIB

Three MFM tips were fabricated and used in this thesis. They are named as

1st, 2nd, and 3rd MFM tips. Sections of nickel thin films were attached on the

apex of commercial cantilever tips by standard FIB techniques used in sample

preparation for Transmision Electron Microscopy (TEM). FIB system (FEI Nova

Lab 600) used in these processes is shown in Fig. 6.1. Steps of fabrication process

are

1. Growth of nickel thin films : Nickel thin films of desired thickness (330

nm and 156 nm) were built by evaporation on the substrates of silicon

wafer (< 100 >) and Si3N4 in high vacuum conditions (10−6torr). Chem-

ical spectroscopy and compositional mapping of the evaporated film was

71
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Figure 6.1: FIB system used in the processes.

made with Energy Dispersive X-ray Analysis system (EDAX). EDAX re-

sults are shown in Fig. 6.2. TEM image of as-prepared nickel film reveals

polycrystalline structure of the coating (see in Fig. 6.3).

2. Release cutting : After a deposition of protective layer of platin Pt on target

section of the nickel film, two trenches are cut out by Ga+ ion milling. Then

U shape undercutting is made at a glazing angle through trenches to make

the target section suspended at one side (see Fig. 6.4-c,d and Fig. 6.6-e ).

3. Attachment of the probe tip on the target section of nickel film: After re-

lease cutting of target section, a micro probe (OmniProbe) is manually

manipulated towards target section and tip of the probe is welded with Pt

deposition to the free end of target section (see Fig.6.7-a). Holding part

of the target section is no longer necessary so it is cut to seperate the sus-

pending target section from the substrate completely.

4. Attachment of the target section of Ni film on the apex of cantilever tip :

After removal of target section via manipulator probe from the surface, it

is placed at an appropriate angle (90o) on the apex of cantilever tip and

welded again with Pt deposition at the contact side (see Fig. 6.4-e,f and

Fig. 6.7-b). Required part of the target section is then severed with Ga+
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Figure 6.2: Results of Energy Dispersive X-ray Analysis of the nickel film evapo-
rated on silicon crystal. Contributions from silicon substrate and nickel film are
clearly seen.

Figure 6.3: Results of TEM imaging of the nickel thin film on silicon wafer:
Polycrystalline structure of the nickel coating can be seen.
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ion milling to separate it from manipulator probe tip (see Fig. 6.7-c and

Fig. 6.5-a).

5. Final modification : The last step of the process is to further modify the

target section attached on the cantilever tip at front and lateral sides so

a section of nickel film of desired geometry is obtained (see Fig. 6.5-c,d,e,f

and Fig. 6.8-e,f).
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Figure 6.4: Fabrication process of 1st tip: (a) Front view of commercial cantilever
to be modifed. (b) Top view. (c) 1st cutting phase of nickel film coating. (d) 2nd

phase, i.e. release cutting. (e) Manipulation and attachment of the target section
on the cantilever tip. (f) A different perspective of the attachment.
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Figure 6.5: Fabrication process of 1st tip (Continued. . . ): (a) Removal of the
manipulator probe from the target section and the cantilever tip. (b) Top view.
(c) A perspective view of the attachment. (d) Modification of the attached section
resulting in a sharper cap for improvement of resolution. (e) A different view of
the attachment on the tip. (f) Backscattered Electron Detector (BSED) bottom
view of attached and modified section is showing more compositional contrast
which marks the light grey Ni film in the middle of white Pt protective layer and
dark grey Si substrate.
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Figure 6.6: Fabrication process of 2nd tip:(a) Front view of commercial cantilever
to be modifed. (b) Head view. (c) Front view. (d) Side view. (e) Cutting out
trenches at both side of target section.(f) BSED image showing compositional
contrast of the nickel film sandwiched between Pt layer of protection and Si
substrate.
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Figure 6.7: Fabrication process of 2nd tip (Continued. . . ): (a) Attachment of ma-
nipulator probe via Pt deposition on the suspended target section. (b) Alignment
and attachment of magnetic target section on cantilever tip. (c) Seperation of
manipulator probe from target section and cantilever tip. (d) Removal of manipu-
lator probe. (e) Side view of attached section showing nickel sandwiched between
Pt layer of protection and Si substrate. (f) BSED image showing compositional
contrast.
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Figure 6.8: Fabrication of 2nd tip (Continued. . . )(a) Front view of trimmed section
with focused ion beams. (b) Side view. (c) Top view. (d) Close view. (e) View of
final modification of attached section resulting only nickel column. (f) Side view
of alignment between the nickel column and the cantilever plane.
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Figure 6.9: Fabrication of the 3rd tip : (a) BSED image showing compositional
contrast. (b) Nickel film is seen between Pt layer of protection and silicon ni-
trate/silicon (c) Side view. (d) Front view.
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6.2 Characterization of FIB Tailored Tips

AFM system used for cantilever magnetometry and fluxgate measurements can be

seen in Fig. 6.10 and cantilever magnetometry configuration is displayed schemat-

ically in Fig. 6.11

Figure 6.10: MFP-3D AFM system shown in the figure was used for fluxgate
measurements and cantilever magnetometry [53].

Figure 6.11: Cantilever magnetometry configuration used for magnetic charac-
terization of FIB tailored MFM tips.

For signal acquisition a phase sensitive detector, i.e lock-in amplifier (Stanford

Reseach Systems, SR844) was used with a function generator (Stanford Reseach
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Systems, DS345) having 1μ Hz sensitivity as a reference source. The coil used for

the generation of AC field was drived by function out of the function generator.

External DC field (Sensored Variable Field Module-VFM [32]) was controlled via

commercial software of the AFM system. In order to control all devices and to

automize experiments such as frequency scans, a custom software was developed

with Microsoft Visual Studio C#.net. This software uses GPIB interface for

digital comunication with devices and also communicates with the commercial

software of the AFM system (via Automation Server-Client property) to acquire

the strength of DC magnetic field (applied by VFM).

For the mechanical calibration of MFM tips routine operations of commer-

cial software of the system were used. First of all, sensitivity parameter, i.e.

AmpInvols (Amplitude Inverse Voltage) giving deflection in nm corresponding

to an equivalent voltage signal was found measuring deflection versus tip-sample

separation which is given by very sensitive LVDT (Linear Variable Differential

Transformer). Results can be seen in corresponding figures. Then thermal spec-

trums of cantilevers were obtained and used for spring constant k determination

which was given as a result of equipartition theorem. At the same time resonance

frequencies fn of modes can be measured. After fine tuning operations done by

the software, i.e. fitting as if each mode was a damped simple harmonic oscillator

spring constants k and quality factors Q of cantilevers were obtained. Results

can be seen in tables Tab. 6.1, Tab. 6.2 and Tab. 6.3.

60

40

20

0

nm

-350-300-250-200-150
nm

Figure 6.12: Deflection versus tip-samle separation plot is used for calculation of
the sensitivity parameter, i.e. AmpInvols(132.09 nm/V).
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f1 157.603 kHz
k1 5.88 N/m
Q1 225.5 -
f2 891.2 kHz
k2 121.17 N/m
Q2 352 -
L 160 · 10−6 m
AmpInvols 132.09 nm/V
tcoating 330 nm
wcoating 1.2 μm
lcoating 3.15 μm
Substrate Si < 100 > -

Table 6.1: Properties of the cantilever and the section of nickel film attached on
the 1st tip are listed.

Figure 6.13: Thermal spectrum of 1st FIB tailored MFM tip. Inlet shows details
of fine tuning.
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The 1st tip to be magnetically characterized can be seen in Fig. 6.4 and

Fig. 6.5. Properites of the 1st tip and the nickel film section attached are given in

Tab. 6.1. As prepared for multifrequency MFM 1st tip had a very high and stiff

2nd resonance mode (f2 > 900 kHz). Therefore FIB operations reducing thick-

ness were conducted after first measurements of cantilever magnetometry which

can be seen in Fig. 6.14 and Fig. 6.15. As it is observed resonance frequency of

cantilever is same and there is no considerable Q factor change since it is related

with the slope of phase curves on the resonance frequency. But an interesting

shifts of phase curves in vertical direction can be seen. Cantilever magnetometry

data taken after thickness modification of the 1st tip can be seen in Fig. 6.16 and

Fig. 6.17.

Figure 6.14: Amplitude, phase versus frequency scans of 1st tip were conducted
at different DC field values.
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Figure 6.15: Amplitude and phase signals of 1st tip at first resonant frequency
of the cantilever under quasi-sinusoidal temporal variation of field (Sampling fre-
quency is 4Hz).
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Figure 6.16: Applied field B, amplitude and phase versus time graphs for the 1st

FIB tailored tip.
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Figure 6.17: Amplitude and phase versus B magnetic field graphs for the 1st FIB
tailored tip.

Properties of 2nd FIB tailored tip are listed at Tab. 6.2. Thermal graph

showing first four resonance modes is seen in Fig. 6.18. Cantilever magnetometry

data for the first resonant mode can be seen in Fig. 6.19 and Fig. 6.20.

Figure 6.18: Thermal spectrum of 2nd FIB tailored MFM tip showing the first 4
mechanical modes.
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f1 9.337 kHz
f2 59.396 kHz
k2 0.2 N/m
Q2 96.2 -
f3 167.341 kHz
k3 0.6 N/m
Q3 225.5 -
L 473.6 · 10−6 m
AmpInvols 602 nm/V
tcoating 330 nm
wcoating 330 nm
lcoating 1 μm
Substrate Si < 100 > -

Table 6.2: Properties of cantilever and section of nickel coating attached on the
2nd tip are listed.
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Figure 6.19: Applied field B, amplitude and phase versus time graphs for the 2nd

FIB tailored tip.
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Figure 6.20: Amplitude and phase versus B magnetic field graphs for the first
resonance mode of 2nd FIB tailored tip.

Properties of 3rd FIB tailored tip are listed at Tab. 6.3. Thermal graph show-

ing first four resonance modes and graph of deflection vs. tip-sample seperation

are seen in Fig. 6.22 and Fig. 6.21, respectively. Cantilever magnetometry data

for the first and second resonant mode can be seen in Fig. 6.23 and Fig. 6.24,

respectively.

Figure 6.21: Deflection versus tip-samle separation plot is used for calculation of
the sensitivity parameter, i.e. AmpInvols(602 nm/V).

A good agreement between experimental cantilever magnetometry data and

results of simulations can not be obtained especially in phase responses. At first

the eddy currents were considered to be the possible reason because back side

of the cantilevers were fully coated with Al to increase their reflectance. But it
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Figure 6.22: Thermal spectrum of 3rd FIB tailored MFM tip showing the first 4
mechanical modes. Inlet shows details of fine tuning at 2nd resonance frequency.

f1 9.323 kHz
f2 59.341 kHz
k2 0.15 N/m
Q2 95.8 -
f3 167.339 kHz
k3 0.59 N/m
Q3 200.7 -
L 473.6 · 10−6 m
AmpInvols 561.32 nm/V
tcoating 120 nm
wcoating 400 nm
lcoating 1.5 μm
Substrate Si3N4 -

Table 6.3: Properties of cantilever and section of nickel coating attached on the
3rd tip are listed.
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Figure 6.23: Amplitude and phase versus B magnetic field graphs for the first
resonance mode of 3rd FIB tailored tip.
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Figure 6.24: Amplitude and phase versus B magnetic field graphs for the second
resonance mode of 3rd FIB tailored tip.
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was found later that even bare silicon cantilever (without Al coating) had also

some magnetic amplitude and phase response detectable on the same order of

magnitudes (see in Fig.6.25). So a further study on the subject is required. To

solve the observed problem micron size coils only for the magnetic characteriza-

tion can be used in the future. As a complementary information amplitude and

phase vs. magnetic field graphs for the cantilever coated with low coercivity ma-

terial (permaloy) is given in Fig. 6.26. It is worthy to note that first and second

modes cantilever datas of 3rd tip have some symmery property as mentioned in

simulations results before.
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Figure 6.25: Amplitude and phase versus B magnetic field graphs for the normal
bare silicon tip.
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Figure 6.26: Amplitude and phase versus B magnetic field graphs for the can-
tilever coated with low coercivity material, permaloy. 180o reversal of magneti-
zation can be seen on the phase curve.

6.3 Multifrequency MFM Imaging with Flux-

gate Principle

Experimental setup we used for multifrequency MFM is shown in Fig: 6.27. In this

multifrequency imaging method 1st resonant flexural mode is used for topography

signal acquisition and 2nd resonant flexural mode is used for measuring magnetic

field interaction simultaneously. A sinusoidal voltage signal is applied to shake

piezo at the frequency f1 of the fundemantal mode of cantilever, and a vertical AC

magnetic field at frequency f2 is used for applying torque on the nickel partice.

Outputs of two lock-in amplifiers are then fed into user inputs of controller, and

then topograpy and magnetic images of sample are constructed by the commercial

software of the AFM system.

Before conducting multi-frequency experiments conventional two pass lift-off

methode was used in order to obtain topograpy and magnetic image on a harddisk

sample. Results can be seen in Fig. 6.28 and Fig. 6.29. As a first observation con-

volution of tip with surface is seen because FIB tailored tip is not sharp enough,
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Figure 6.27: Experimental setup used for multi-frequency MFM.

but nevertheless a good magnetic contrast of bit patterns can be obtained.

For the multifrequency imaging a modulating magnetic field BAC of frequency

891.2 kHz, i.e. at 2nd resonance frequency of the first cantilever was applied as the

amplitude and the phase of AC deflection signal were being fed into the MFM

software for the construction of the images. Coupling of magnetic interaction

with topograpy signal can be seen in Fig. 6.30. Images of the amplitude and the

phase of 2nd resonance frequency signal are seen in figures Fig. 6.31 and Fig. 6.32.

The strength of topographical coupling to magnetic image was observed to

increase as we decreased the amplitude setpoint parameter or increased the driv-

ing force of tip at 1st resonance frequency. On the other hand the strength of

magnetical coupling to topography was observed to increase as the strength of

magnetic field was increased. It seems possible to decrease coupling between sig-

nals if optimum parameters for the amplitude setpoint, the driving force and the

magnetic field strength of modulation are chosen. Also bandwidth (BW) of the

feedback loop keeping the setpoint amplitude constant for topograpy acquisition

may be reduced or a cantilever having higher frequency for 2nd resonance mode

may be chosen to improve the decoupling of signals.
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Figure 6.28: Topograpy of a harddisk surface was taken with 1st FIB tailored tip.
Convolution of the tip with the sample surface can be seen as a rabbit ear like
shapes on the dust particles. Red and blue curves are the profiles of forward and
backward scans of the same line, respectively.

Figure 6.29: Image showing magnetic bit patterns on the harddisk surface was
taken with 1st FIB tailored tip with conventional two pass lift-off methode. Red
and blue curves are the profiles of forward and backward scans of the same line,
respectively.
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Figure 6.30: Topograpy of a harddisk surface was taken while magnetically mod-
ulating FIB tailored tip at 2nd resonance frequency f2 (showing coupling effect of
the magnetic interaction). Red and blue curves are the profiles of forward and
backward scans of the same line, respectively.

Figure 6.31: Amplitude image of the signal at 2nd resonance frequency f2 (showing
topographical coupling as dark areas). Red and blue curves are the profiles of
forward and backward scans of the same line, respectively.
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Figure 6.32: Phase image of the signal at 2nd resonance frequency f2 (showing
topographical coupling). Red and blue curves are the profiles of forward and
backward scans of the same line, respectively.



Chapter 7

Conclusions and Future Work

As stated in the Introduction Chapter of this thesis, there are two intrinsic prob-

lems of MFM, i.e. apriori unknown magnetization of cantilever tips and coupling

of magnetic forces with other short and long range forces of tip-sample interac-

tion. In addition to these mentioned problems the conventionally applied two

pass lift-off technique of MFM using tips coated with magnetic materials suf-

fers from topographical artifacts, thermal drifts and characteristic dependance

on calibration samples. Therefore an alternative technique called multifrequency

fluxgate MFM is aimed to developed in this thesis.

At first simulations based on the coherent rotation theory of single domain

magnetic particles were made, and dynamics of magnetization reversal and hys-

teresis were studied. Then a methode of FIB system used for TEM sample preper-

ation was developed to attach submicron magnetic particles on the apex of the

cantilever tips and specifically used to fabricate MFM tips with desired size of

nickel particles. Nickel particles used for the magnetic interactions were especially

cut out from the surface of evaporated nickel films. Using thin films as a source

of magnetic material for MFM tips has two fold advantage. Firstly compositional

and structural analysis of the thin films can be made using EDAX, TEM and

XRD techniques (we used EDAX and TEM). Secondly before or after the evap-

oration of films on appropriate substrates thermal treatment for crystallization

can be made and magnetic annealing processes to control or to improve magnetic
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properties can be applied. We used as-evaporated nickel films. It is also possible

that using conventional methode of MFM magnetic domain patterns of thin films

can be observed beforehand and then used for the determination of the location

of target section to be cut. We believe that fabrication of an ideal tip for MFM

can be accomplished in this way.

For the characterization of FIB tailored tips a variant of cantilever magne-

tometry was used. Driving the cantilever using AC magnetic field of 5-10 Gauss

in a slowly changing horizontal magnetic field, amplitude and phase responses

were measured and then compared to simulations. But a reasonable agreement

could not be established. It was found later that even for the cantilevers without

any magnetic coating or attached magnetic particles, a magnetic reponse of same

order of magnitude occurs. Magnetic effect of the bare silicon cantilevers can not

be ignored so a further study on the subject is needed.

Multifrequency imaging of magnetic interactions simultaneously with the ac-

quisition of topography was experimentally demonstrated. Resonance frequencies

of the 1st and 2nd flextural modes were used as different source channels. Cou-

pling strengths of the signal can be adjusted changing setpoint parameters of

MFM system and the strenght of the magnetic field used for modulation. For

a true fluxgate measurement of local magnetic fields, magnetic particles having

sizes near superparamagnetic limit (radius < 70nm) are needed because high

currents must be applied in order to create magnetic field values enough to re-

verse magnetization of the high anisotropic particle attached. This poses some

experimental difficulties such as cooling and perturbation on the magnetization

of sample under investigation. As known every experimental technique has draw-

backs of its own.

Recently combination of the spectroscopic resolution of MR with the spatial

resolution of AFM gave birth a new technique called Magnetic Resonace Force

Microscopy (MRFM) which has potential of 3D imaging of atoms in molecules

and even single nuclear spin detection. Fluxgate principles can also be used

with these resonance techniques to improve their abilities. A fluxgate mechanism

dependent on nuclear spins would be very exciting.
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Since exchange forces responsible of spin ordering are short range forces, mea-

surement of these forces as in Magnetic Exchange Force Microscopy needs new

technological improvements. Fabrication of new special MFM tips can be used to

probe these interactions. Even as a read out for quantum computing, i.e qubits

new variants of MFM can be considered and implemented.
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Appendix A

Matlab codes for simulations

A.1 The Simple Model

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [deg,R,A]=magShake(B)

%need a function of B field as an input

%deg=pahse of oscillation

%R=Amplitude

%A angle between easy axis and eq. magnetic moment

invols=1/(602*1e-9);%Volt/m

uo=4*pi*1e-7;

Ms=0.52*1e6;%0.6/uo;

a=330e-9;%Lx

b=330e-9;%Ly

c=1000e-9;%Lz

V=a*b*c;

%[Dx,Dy,Dz]=rectDemagFactors(a,b,c);%for rect. particles,(not included).

%Keff=(1/2)*uo*Ms^2*(Dy-Dx)%Uniaxial for rectangular
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%for elisoidal particles

V=(4/3)*pi*a*b*c*5;

r=c/a;

dc=(1-r*asin(sqrt(1-r^2))/(sqrt(1-r^2)))/(1-r^2);

da=(1-dc)/2;

Keff=(1/2)*uo*Ms^2*(da-dc)*2;

k=10;%N/m Spring constant

L=150e-6;%length of cantilever

Leff=L/1.5;

Ldeff=L/1.377;

Q=200;%quality factor

Oeq=11*pi/180;%initial tilt of cantilver

%for 3D visualization

%[Bp,phi] = meshgrid(-2500e-4:10e-4:2500e-4, -pi:pi/1000: pi);

%u=-Bp.*Ms.*V.*sin(Oeq+sin(2.*phi).*(Keff.*V)./(k.*L.^2)+phi)

%+Keff.*V.*sin(phi).^2

%+Kb.*V.*sin(2.*(phi+Ob)).^2k.*L.^2.*(sin(2.*phi).*(Keff.*V)

% ./(k.*L.^2)).^2./2;

%mesh(Bp,npi2pi(180*phi/pi),u)

%hold on

[A]=findRotAngle(Oeq,Keff,Ms,V,Leff,k,B*1e-4);%find minimums

%For drawing the path of eq. points

%[B,A]=findMinPhases(Oeq,Keff,Ms,V,L,k,Bmax);

%u1=-B.*Ms.*V.*sin(Oeq+sin(2.*A).*(Keff.*V)./(k.*L.^2)+A)

%+Keff.*V.*sin(A).^2

%+k.*L.^2.*(sin(2.*A).*(Keff.*V)./(k.*L.^2)).^2./2;

%plot3(B,npi2pi(180*A/pi),u1,’k’,’LineWidth’,2);
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n=(Keff*V)/k*Leff^2;

%amplitude response

R=Ms.*V.*(5e-4).*abs(sin(Oeq+n.*sin(2.*(A))+A))./(k.*Ldeff)

./sqrt((B*1e-4.*Ms.*V.*sin(Oeq+n.*sin(2.*(A))...

+A)./(k.*Leff.^2)+1./2./Q.^2).^2+(1-1./2./Q.^2)./Q.^2);

%Phase response

angle=atan(-sqrt(1-1./(2.*Q.^2))./(1/(2*Q)

+Q.*Ms.*V.*B.*1e-4.*sin(Oeq+n.*sin(2.*A)+A)./(k.*Leff.^2)));

deg=npi2pi(180*angle/pi);

%

for i=1:length(deg)

if(sign(sin(Oeq+n.*sin(2.*A(i))+A(i)))<0)

deg(i)=180+deg(i);

end

end

%}

figure

subplot(2,1,1);

plot(R)

subplot(2,1,2);

plot(deg)

%plot(npi2pi(180*A/pi))

%plot(B,R*invols)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [A]=findRotAngle(Oeq,Keff,Ms,V,L,k,B)

%To find eq. points of energy function

add=pi/1000;

iniAngle=0*pi/180;

A=zeros(1,length(B));
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A(1)=iniAngle;

j=2;

for i=1:1:length(B)-1

phi=A(j-1);

val=-B(j).*Ms.*V.*sin(Oeq+sin(2.*(phi))

.*(Keff.*V)./(k.*L.^2)

+(phi))+Keff.*V.*(sin(phi).^2)

+k.*L.^2.*(sin(2.*(phi)).*(Keff.*V)./(k.*L.^2)).^2./2;

minval1=val;

phi1=phi;

minval2=val;

phi2=phi;

while(1)

phi1=phi1+add;

val=-B(j).*Ms.*V.*sin(Oeq+sin(2.*(phi1))

.*(Keff.*V)./(k.*L.^2)+phi1)

+Keff.*V.*sin(phi1).^2

+k.*L.^2.*(sin(2.*(phi1)).*(Keff.*V)./(k.*L.^2)).^2./2;

if(val<=minval1)

minval1=val;

else

phi1=phi1-add;

break;

end

end

while(1)

phi2=phi2-add;

val=-B(j).*Ms.*V.*sin(Oeq+sin(2.*(phi2))

.*(Keff.*V)./(k.*L.^2)+phi2)

+Keff.*V.*(sin(phi2).^2)
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+k.*L.^2.*(sin(2.*(phi2)).*(Keff.*V)./(k.*L.^2)).^2./2;

if(val<=minval2)

minval2=val;

else

phi2=phi2+add;

break;

end

end

if(minval1<=minval2)

A(j)=phi1;

else

A(j)=phi2;

end

j=j+1;

end;

A.2 The General Model

%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [theta]=findEqPoints(Bdc,phiS,thetaS

,phiC,thetaC,K1,K2)

invols=1/(561.32*1e-9);%Volt/m

a=120e-9;%Lx

b=400e-9;%Ly

c=1500e-9;%Lz

V=a*b*c;

%[Nc,Nb,Na]=rectDemagFactors(a,b,c);(Not included)

%Nc+Nb+Na=1
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Ms=0.52*1e6;%0.6/uo;

k=0.15;%N/m (k)

L=474e-6;

Leff=L/1.50;

Ldeff=L/4.788;%1.377;

Q=95.8;

Oeq=11*pi/180;

%{

phiS=0*pi/180;

thetaS=0*pi/180;%Shape axis

phiC=10*pi/180;

thetaC=0*pi/180;%Crystal axis

K1=-35*1e3;Cubic anisiotropy constants

K2=0*-2.3*1e3;

%}

Bac=5e-4;%Tesla

mphi=zeros(size(Bdc));

mtheta=zeros(size(Bdc));

theta=zeros(size(Bdc));

tminDir=0;

eqP=0*pi/180;eqT=0*pi/180;

t=0:pi/10:2*pi;

for i=1:length(Bdc)

r=1*pi/180;

while(1)

Eeq=totalEnergy1(eqP,eqT,Oeq,Ms,V,Leff,k,Bdc(i)

,Na,Nb,Nc,phiC,thetaC,phiS,thetaS,K1,K2);

out=-1;

for j=1:length(t)
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E = totalEnergy1(eqP+r*cos(t(j)),eqT+r*sin(t(j))

,Oeq,Ms,V,Leff,k,Bdc(i),Na,Nb,Nc,phiC

,thetaC,phiS,thetaS,K1,K2);

if(E<Eeq)

Eeq=E;

tminDir=t(j);

out=1;

end

if( out~=1 && E==Eeq )

out=0;

end

end

if(out==-1)%all larger

mphi(i)=eqP;

mtheta(i)=eqT;

break;

elseif((out==1))%a low found

eqP=eqP+r*cos(tminDir);

eqT=eqT+r*sin(tminDir);

else%escape from saddle point

break;

if(r<10*pi/180)

r=r+pi/180;

else

break;

end

end
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end

end

mx=sin(mtheta).*cos(mphi);

my=sin(mtheta).*sin(mphi);

mz=cos(mtheta);

%{

figure

plot3(mx,my,mz);%plots trace of moment vector in 3D

hold

plot3(mx,0.5*ones(size(Bdc)),mz,’r’);%For projection on xz

%plot3(mx,my,-1.2*ones(size(Bdc)),’m’);

grid

xlabel(’X’);

ylabel(’Y’);

zlabel(’Z’);

%}

%

for i=1:length(Bdc)

if(Bdc(i)==0)

theta(i)=0;

else

theta(i)=-(mz(i).*cos(Oeq)+mx(i).*sin(Oeq))./(mx(i)

.*cos(Oeq)-mz(i).*sin(Oeq)+k.*Leff.^2

./(Bdc(i).*1e-4.*Ms.*V));

end

end

%

subplot(1,2,1)

R=Bac.*Ms.*V.*abs(mz.*sin(Oeq+theta)-mx.*cos(Oeq+theta))

./(k.*Ldeff)./sqrt((Bdc.*1e-4.*Ms.*V.*(mx.*cos(Oeq+theta)

-mz.*sin(Oeq+theta))./(k.*Leff.^2)...
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+1./(2.*Q.^2)).^2+(2.*Q.^2-1)./(2*Q.^4));

plot(Bdc,R*invols);

%figure

%hold

%plot(Bdc*1e-4,R,’r’);grid;

subplot(1,2,2)

tanP=-sqrt(1-1./(2.*Q.^2))./Q./(Bdc.*1e-4.*Ms.*V.

*(mx.*cos(Oeq+theta)-mz.*sin(Oeq+theta))

./(k.*Leff.^2)+1./(2.*Q.^2));

P=atan(tanP);

plot(180*P/pi)

%drawnow

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [E]=totalEnergy1(mphi,mtheta,Oeq,Ms,V,Leff,k,Bdc

,Na,Nb,Nc,phiC,thetaC,phiS,thetaS,K1,K2)

uo=4*pi*1e-7;

%Direction cosines of m in XYZ

mx=sin(mtheta).*cos(mphi);

my=sin(mtheta).*sin(mphi);

mz=cos(mtheta);

acx1=cos(thetaC).*cos(phiC);

acx2=cos(thetaC).*sin(phiC);

acx3=-sin(thetaC);

acy1=-sin(phiC);

acy2=cos(phiC);

acy3=0;

acz1=sin(thetaC).*cos(phiC);

acz2=sin(thetaC).*sin(phiC);

acz3=cos(thetaC);
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%Direction cosines of m in crystal unisotropy axis.

alf1=acx1.*mx+acx2.*my+acx3.*mz;

alf2=acy1.*mx+acy2.*my+acy3.*mz;

alf3=acz1.*mx+acz2.*my+acz3.*mz;

asx1=cos(thetaS).*cos(phiS);

asx2=cos(thetaS).*sin(phiS);

asx3=-sin(thetaS);

asy1=-sin(phiS);

asy2=cos(phiS);

asy3=0;

asz1=sin(thetaS).*cos(phiS);

asz2=sin(thetaS).*sin(phiS);

asz3=cos(thetaS);

%Direction cosines of m in shape unisotropy axis.

beta1=asx1.*mx+asx2.*my+asx3.*mz;

beta2=asy1.*mx+asy2.*my+asy3.*mz;

beta3=asz1.*mx+asz2.*my+asz3.*mz;

%

if(Bdc==0)

theta=0;

else

theta=-(mz.*cos(Oeq)+mx.*sin(Oeq))

./(mx.*cos(Oeq)-mz.*sin(Oeq)+k.*Leff.^2

./(Bdc.*1e-4.*Ms.*V));

end

%}

%Add constant to make energy all positive

%for drawing purposes only

KC0=0;%*(0.333*V*abs(K1)+0.037*V*abs(K2));

KS0=abs(Bdc)*1e-4.*Ms.*V*0;
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%Energy U to be minimized....

E = KS0-Bdc*1e-4.*Ms.*V.*(cos(Oeq+theta).*mx-sin(Oeq+theta)*mz)...

+(V.*uo.*Ms.^2/2).*(Na*(beta1).^2+Nb*(beta2).^2

+Nc*(beta3).^2)...

+KC0+K1.*V.*(alf1.^2.*alf2.^2+alf3.^2.*alf2.^2

+alf3.^2.*alf1.^2)

+K2.*V.*(alf1.^2.*alf2.^2.*alf3.^2)...

+k.*(Leff.*theta).^2/2;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%


